Answer:
T² ∝ R³
Explanation:
Given data,
The period of revolution of the planet around the sun, T
The mean distance of the planet from the sun, R
According to the III law of Kepler, " Law of Periods' states that the square of the orbital period to go around the sun once is directly proportional to the cube of the mean distance between the sun and the planet.
T² ∝ R³

From the above equation it is clear that T² varies directly as the R³.
Answer:
7 m/s^2
Explanation:
Given that the jet is traveling 37.6 m/s when the pilot receives the message.
And it takes the pilot 5.37 s to bring the plane to a halt.
Acceleration of the plane can be calculated by using first equation of motion
V = U - at
Since the plane is going to stop, the final velocity V = zero.
And the acceleration will be negative
Substitute all the parameters into the formula
0 = 37.6 - 5.37a
5.37a = 37.6
Make a the subject of formula
a = 37.6 / 5.37
a = 7.0 m/s^2
Therefore, the acceleration of the plane to bring the plane to a halt is 7 m/s^2
Answer:
the average kinetic energy of water particles - C.
Answer:
1960Joules
Explanation:
Since we are not told what too find, we can as well find the Gravitational Potential Energy.
GPE = mass * acceleration due to gravity * height
GPE = 100*9.8 * 2
GPE = 980*2
GPE = 1960Joules
Hence the gravitational potential Energy is 1960Joules
Answer:
Explanation:
work done by applied force
= force x displacement
= 7.6 x 15 m
= 114 J .