Answer:
The magnitude of the car's acceleration as it slows during braking is 36.81 m/s²
Explanation:
From the question, the given values are as follows:
Initial velocity, u = 90 m/s
final velocity, v = 0 m/s
distance, s = 110 m
acceleration, a = ?
Using the equation of motion, v² = u² + 2as
(90)² + 2 * 110 * a = 0
8100 + 220a = 0
220a = -8100
a = -8100/220
a = -36.81 m/s²
The value for acceleration is negative showing that car is decelerating to a stop. The magnitude of the car's acceleration as it slows during braking is therefore 36.81 m/s²
Testing the electrical resistance of different materials. it is the answer
The Volume of a Cube with a side(s) of 11.4 cm is
<span>V = s^3 </span>
<span> V = (11.4)^3 cm^3 </span>
<span> V = 1481.544 cm^3 </span>
<span> V = 1482 cm^3</span>
<span>however the Surface Area of a cube is the combined area of all the sides </span>
<span> A = 6s^2 </span>
<span> A = 6(11.4)^2 cm^2 </span>
<span> A = 779.76 cm^2 </span>
Answer:
2.5
Explanation:
25-22.5n= will give you 2.5
Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.