Answer:
A Pareto chart, named after an Italian economist, combines a bar chart with a line graph. The bar chart is different from a histogram in more than one way. For example, the vertical bars need not touch one another as per a histogram
Explanation:
The force constant of the spring is approximately 24.038 newtons per meter.
As we are talking about Simple Harmonic Motion. In this exercise we need to determine the Spring Constant (
), in newtons per meter, from the equation of the Period (
), in seconds, which is described below:
(1)
Where
is the mass of the moving element, in kilograms.
If we know that
and
, then the spring constant of the spring is:




The force constant of the spring is approximately 24.038 newtons per meter.
Please see this question related to Simple Harmonic Motion for further details: brainly.com/question/17315536
We are given that the system “releases” heat of 2,500 J,
and that it “does work on the surroundings” by 7,655 J.
The highlighted words releases and does work on the surroundings
all refers to that it is the system itself which expends energy to do those
things. Therefore the action of releasing heat and doing work has both magnitudes
of negative value. Therefore:
heat released = - 2, 500 J
work done = - 7, 655 J
Which means that the total internal energy change of the
system is:
change in internal energy = heat released + work
<span>change in internal energy = - 2, 500 J + - 7, 655 J</span>
<span>change in internal energy = -10,155 J</span>
air akan mendidih pada suhu 100 derajat celcius.air akan selalu pada suhu tersebut,jika lebih dari itu air akan menguap
<h2>
Answer: faster </h2>
The speed of sound varies depending on the medium through which the sound waves travel. In addition, it varies with changes in the temperature of the medium. This is because an <u>increase in temperature means that the frequency of interactions between the particles that transport the vibration increases</u>, hence this increase in activity increases the speed. That is why the speed of sound in a gas is not constant, but depends on the temperature.
So, if we want <u>the speed of sound in a gas to increase</u>, the<u> temperature</u> of that gas must <u>increase</u>, as well.
For example, the higher the air temperature, the greater the velocity of propagation. Experiments have shown that the speed of sound in air increases
for every
increase in temperature.
Therefore:
<h2>The speed of sound will be faster than in December</h2>