Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K):
K = ½mv²
v = √(2K/m)
λ = h/(mv)
= h/(m√(2K/m))
= h/√(2Km)
So λ is proportional to 1/√K.
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy:
K = 6U₀
Outer the potential well the potential energy is U₀, so
K = 5U₀
(because kinetic and potential energies add up to 6U₀)
Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is:
1/√(5U₀) : 1/√(6U₀)
= √6 : √5
Answer: Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: Dry friction is a force that opposes the relative lateral motion of two solid surfaces in contact
Answer:
Anions have more electrons than protons and so have a net negative charge. Cations have more protons than electrons and so have a net positive charge. Zwitterions are neutral and have both positive and negative charges at different locations throughout the molecule.
Explanation:
Answer:
B
Explanation:
this is because the neutrons do not have a charge, the things that have charge in an atom are electrons and protons.
and in the nucleus of an atom, there are protons and neutrons so you can see that A is not the answer
if you see the periodic table, you will know that the number of electrons and protons are equal, so the charges cancel each other out, hence the charge of an atom will be neutral
let me give you a tip which I got from my teacher, never write there is no charge in the atom, this suggests that there is no protons or electrons.
instead, write, the it is neutral
hope it helps if not please report it so that someone else gets to try it out
Assume a maximum stopping acceleration of g/2 where g is acceleration due to gravity.
Answer:
2.99 m/s
Explanation:
Stopping distance, s = 3 ft = 0.914 m
final velocity, v = 0
a = g/2 = 4.9 m/s²
Use third equation of motion:

substitute the values to find the speed of train:
