Answer:
d = 3.5*10^4 m
Explanation:
In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:

The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:
(1)
where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):

hence, the displacement of the airplane is 3.45*10^4 m
Answer:
a) F = 64.30 N, b) θ = 121.4º
Explanation:
Forces are vector quantities so one of the best methods to add them is to decompose each force and add the components
let's use trigonometry
Force F1
sin 170 = F_{1y} / F₁
cos 170 = F₁ₓ / F₁
F_{1y} = F₁ sin 170
F₁ₓ = F₁ cos 170
F_{1y} = 100 sin 170 = 17.36 N
F₁ₓ = 100 cos 170 = -98.48 N
Force F2
sin 30 = F_{2y} / F₂
cos 30 = F₂ₓ / F₂
F_{2y} = F₂ sin 30
F₂ₓ = F₂ cos 30
F_{2y} = 75 sin 30 = 37.5 N
F₂ₓ = 75 cos 30 = 64.95 N
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = -98.48 +64.95
Fₓ = -33.53 N
Y axis
F_y = F_{1y} + F_{2y}
F_y = 17.36 + 37.5
F_y = 54.86 N
a) the magnitude of the resultant vector
let's use Pythagoras' theorem
F = Ra Fx ^ 2 + Fy²
F = Ra 33.53² + 54.86²
F = 64.30 N
b) the direction of the resultant
let's use trigonometry
tan θ’= F_y / Fₓ
θ'= 
θ'= tan⁻¹ (54.86 / (33.53)
θ’= 58.6º
this angle is in the second quadrant
The angle measured from the positive side of the x-axis is
θ = 180 -θ'
θ = 180- 58.6
θ = 121.4º
We don't know anything about the amount of distance it travels, but that's okay. The only equation we need here is
velocity(final) = velocity(initial) + acceleration * time
vf = vi + (a * t)
The ball is dropped from rest, so vi = 0 m/s.
We want it so that the ball hits the ground with a final velocity of 60 m/s, so vf = 60 m/s.
We are given the acceleration due to gravity, a = 9.8 m/s^2.
We are solving for the time, t = ?.
Now we just plug in the values.
vf = vi + (a * t)
60 m/s = 0 m/s + (9.8 m/s^2)*(t)
60 = 9.8t
60 / 9.8 = t
t = 6.122 s
Hopefully this is the right answer.
Answer:
Explanation:
a Downward acceleration of car A along the slope
= g sinθ - μ g cosθ
= g ( sinθ - μ cosθ)
= 9.8 ( sin 12 - .6 x cos 12 )
= 9.8 x ( .2079 - .5869 )
= - 3.714 m / s²
So there will be deceleration
v² = u² - 2 a s
= 18² - 2 x 3.714 x 24
= 324 - 178
= 146
v = 12 .08 m /s
b )
In the second case , kinetic friction changes
downward acceleration
= g ( sinθ - μ cosθ)
= 9.8 ( sin12 - .1 x cos 12 )
9.8 ( .2079 - .0978 )
= 1.079 m /s
there will be reduced acceleration
v² = u² - 2 a s
= 18² +2 x1.079 x 24
= 324 + 52
= 376
v = 19.4 m /s
The reason why it relates to the newtons 3 laws of motion because the first law of motion states that every object will stay at rest unless it's moved by an unbalanced force which is your hand. The second one states that <span> the velocity of an object changes when it is subjected to an external force meaning it's used by the equation that is commonly used for which is F=M*A. The way it relates to the second law because you are adding force some way or another, the mass is the egg and the acceleration is the drop of the egg while it free falls. And the last one, for a reaction there is always an equal or opposite reaction and the opposite reaction is the floor because it's going against the egg causing it to crack. If it was with the egg, it would have a soft, smooth landing.</span>