Answer:
F = M a is the vector equation involved
F = T - M g are the forces acting on the elevator (scalar equation)
T - M g = M a
T = M (a + g) remember this a scalar
If a is slowing down then it must have a positive acceleration upwards
Therefor the tension in the cable must be greater than zero
When the tension increases to M g, a has increased to zero
For a to be zero, no acceleration, T = M g
Answer:
We have not drilled to the center of the earth.
Explanation:
A) An electrical resistor
Hope that helps, Good luck! (:
Answer:
I do not know which substance you are referring to, but the freezing point of water is 32°F, or 0°C.
Answer:
191.36 N/m
Explanation:
From the question,
The Potential Energy of the safe = Energy of the spring when it was compressed.
mgh = 1/2ke²............... Equation 1
Where m = mass of the safe, g = acceleration due to gravity, h = height of the save above the heavy duty spring , k = spring constant, e = compression
Making k the subject of the equation,
k =2mgh/e²................ Equation 2
Given: m = 1100 kg, h = 2.4 mm = 0.0024 m, e = 0.52 m
Constant: g = 9.8 m/s²
Substitute into equation 2
k = 2(1100)(9.8)(0.0024)/0.52²
k = 51.744/0.2704
k = 191.36 N/m
Hence the spring constant of the heavy-duty spring = 191.36 N/m