Answer:
Time period of the osculation will be 0.0671 sec
Explanation:
It is given a vertical spring is stretched by 4 cm
So change in length of the spring x = 4 cm = 0.04 m
Mass which is hung from it m = 12 gram = 0.012 kg
Sprig force will be equal to weight of the mass
So 

k = 244.7 N/m
Now new mass is m = 28 gram = 0.028 kg
So time period with new mass will be


<span>The contact force that acts on objects in a liquid or gas and allows objects to float is called </span>Buoyancy.
Answer:
an object sliding down hill
Explanation:
On a slope, the force applied is due to gravity. Its direction is straight down. If the object is sliding down the hill, its displacement is at an angle to the applied force. The angle of displacement will depend on the steepness of the hill.
Answer:
Haven't done this but I think it will increase by 73.29% not too anyone correct me if I'm worng
Answer: 40.84 m
Explanation:
Given
Radius of the disk, r = 2m
Velocity of the disk, v = 7 rad/s
Acceleration of the disk, α = 0.3 rad/s²
Here, we use the formula for kinematics of rotational motion to solve
2α(θ - θ•) = ω² - ω•²
Where,
ω• = 0
ω = v/r = 7/2
ω = 3.5 rad/s
2 * 0.3(θ - θ•) = 3.5² - 0
0.6(θ - θ•) = 12.25
(θ - θ•) = 12.25 / 0.6
(θ - θ•) = 20.42 rad
Since we have both the angle and it's radius, we can calculate the arc length
s = rθ = 2 * 20.42
s = 40.84 m
Thus, the needed distance is 40.84 m