Answer: Basilosaurus is a prehistoric whale which lived approximately 40 million to 34 million years ago during the Late Eocene Period.
Explanation:
Answer:
The answer to your question is d. 0.5 M
Explanation:
Data
[A] = 1M
K = 0.5
Concentration of B and C at equilibrium = x
Concentration of A at equilibrium = 1 - x
Equation of equilibrium
k = ![\frac{[B][C]}{A}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%5BC%5D%7D%7BA%7D)
Substitution
![0.5 = \frac{[x][x]}{1 - x}](https://tex.z-dn.net/?f=0.5%20%3D%20%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B1%20-%20x%7D)
Simplification
0.5 = 
Solve for x
0.5(1 - x) = x²
0.5 - 0.5x = x²
x² + 0.5x - 0.5 = 0
Find the roots x₁ = 0.5 x₂ = -1
There are no negative concentrations so the concentration of A at equilibrium is
[A] = 1 - 0.5
= 0.5 M
Answer:
In an equilibrium mixture of the three gases, PCO = PCl2 = 2.22 × 10-4 atm. The partial pressure of the product, phosgene (COCl2), is kp=(COCl2)/(CO)(Cl2) which is . So, the correct answer is 7.34.
If the piston is facing towards the bottom of the container holding the cold water, the piston will not move. It will move wherever it is facing.
Answer:
0.083 moles KCl
Explanation:
We have 252 mL of 0.33 M KCl. "M" is molarity, and it's measured in mol/L. Since we know the molarity is 0.33 mol/L, in order to find how many moles 252 mL is, we need to multiply our given volume by the molarity.
However, our given volume is in mL, so let's convert to L first by dividing 252 by 1000 (because there are 1000 mL in 1 L):
252/1000 = 0.252 L
Now, we can multiply 0.252 L by 0.33 mol/L to get moles since the L units will cancel out:
0.252 L * 0.33 mol/L = 0.08316
We have two significant figures here, so round 0.08316 to 0.083.
The answer is 0.083 moles.
Hope this helps!