Answer:
The isotope with the greatest number of protons is:
- <u>option D: Pu-239, with 94 protons</u>
Explanation:
The number of <em>protons</em> is the atomic number and is a unique number for each type of element.
You can tell the number of protons searching the element in a periodic table and reading its atomic number.
Thus, this is how you tell the number of protons or each isotope
Sample Chemical symbol Element atomic number # of protons
A Pa-238 Pa protactinium 91 91
B U-240 U uranium 92 92
C Np-238 Np neptunium 93 93
D Pu-239 Pu plutonium 94 94
Answer: The concentration of
ions in the resulting solution is 1.16 M.
Explanation:
To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the 
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get

The concentration of
ions in the resulting solution will be same as the molarity of solution which is 1.16 M.
Hence, the concentration of
ions in the resulting solution is 1.16 M.
Answer: both the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Explanation:
Glycogen is a polysaccharide of glucose which is a form of energy storage in fungi, bacteria and animals. Glycogen is primarily stored in the liver cells and skeletal muscle.
The difference in interchain stability between the polysaccharides glycogen and cellulose is due to the different glycosidic linkages of the molecules and the different hydrogen bonding partners of the individual chains.
Answer:
hypochlorite ion
Explanation:
The hypochlorous acid, HClO, is a weak acid with Ka = 1.36x10⁻³, when this acid is in solution with its conjugate base, ClO⁻ (From sodium hypochlorite, NaClO) a buffer is produced. When a strong acid as HCl is added, the reaction that occurs is:
HCl + ClO⁻ → HClO + Cl⁻.
Where more hypochlorous acid is produced.
That means, the HCl reacts with the hypochlorite ion present in solution
Answer:
In 1 mol of Pb₃(PO₄)₄ occupies 1001.48 grams
Explanation:
This compound is the lead (IV) phosphate.
Grams that occupy 1 mole, means the molar mass of the compound
Pb = 207.2 .3 = 621.6 g/m
P = 30.97 .4 = 123.88 g/m
O = (16 . 4) . 4 = 256 g/m
621.6 g/m + 123.88 g/m + 256 g/m = 1001.48 g/m