1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
77julia77 [94]
2 years ago
8

A car is traveling south at a speed of 54 miles per hour and then begins traveling at a speed of 55 miles per hour but continues

traveling in the same direction. Which of the following has changed?
A. mass
B. volume
C. velocity
D. density
Physics
1 answer:
Kazeer [188]2 years ago
7 0

Explanation:

VELOCITY: BECAUSE ITS A VECTOR QUANTITY

You might be interested in
Divers in acapulco, mexico, dive headfirst at 8 feet per second from the top of a cliff 87 feet above the pacific ocean. during
xxMikexx [17]
Depends on the wieght of his genitals.
8 0
3 years ago
The coefficient of cubical expansion of a substance depends upon
zzz [600]
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.

Cubical expansion, also known as, volumetric expansion has the following formula:

</span>Δ V = β V₁ ΔT

V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.

β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
7 0
3 years ago
Carbon is allowed to diffuse through a steel plate 15 mm thick. The concentrations of carbon at the two faces are 0.65 and 0.30
beks73 [17]

Answer:

T=575.16K

Explanation:

To solve the problem we proceed to use the 1 law of diffusion of flow,

Here,

J=-D\frac{\Delta C}{\Delta x}

\Delta C is the rate in concentration

\Delta xis the rate in thickness

D is the diffusion coefficient, where,

D= D_0 exp(\frac{Q_d}{RT})

Replacing D in the first law,

J=-(D_0 exp(\frac{-Q_D}{RT}))\frac{\Delta }{\Delta x}

clearing T,

T=\frac{Q_d}{R*ln(\frac{J*\Delta x}{D_0*\Delta C})}

Replacing our values

T=-\frac{80000}{8.31*ln(\frac{(6.2*10^{-7})(-15*10^{-3})}{(1.43*10^{-9})(0.65-0.30)})}

T=-\frac{80000}{-138.09}

T=575.16K

4 0
3 years ago
A light with a second-order bright band forms a diffraction angle of 30. 0°. The diffraction grating has 250. 0 lines per mm. Wh
Luden [163]

The distance between two successive troughs or crests is known as the wavelength. The wavelength of the light will be 1000 nm.

How do you define wavelength?

The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.

The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.

Diffraction angle= 30⁰

Diffraction grating per mm= 250

wavelength = ?

Mathematically the equation of bright band is given by

\rm \lambda= \frac{sin\theta}{nN}

\rm \lambda= \frac{sin23^0}{250\times 2}

\rm \lambda= 0.000001 m

\rm \lambda= 1000 nm

Hence the wavelength of the light will be 1000 nm.

To learn more about the wavelength refer to the link;

brainly.com/question/7143261

8 0
2 years ago
Read 2 more answers
May you help me answer this​
Firdavs [7]

1) See three Kepler laws below

2a) Acceleration is 2.2 m/s^2

2b) Tension in the string: 27.4 N

3a) Kinetic energy is the energy of motion, potential energy is the energy due to the position

3b) The kinetic energy of the object is 2.25 J

Explanation:

1)

There are three Kepler's law of planetary motion:

  1. 1st law: the planets orbit the sun in elliptical orbits, with the Sun located at one of the 2 focii
  2. 2nd law: a segment connecting the Sun with each planet sweeps out equal areas in equal time intervals. A direct consequence of this is that, when a planet is further from the sun, it travels slower, and when it is closer to the sun, it travels faster
  3. 3rd law: the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit. Mathematically, T^2 \propto r^3, where T is the period of revolution and r is the semi-major axis of the orbit

2a)

To solve the problem, we have to write the equation of motions for each block along the direction parallel to the incline.

For the block on the right, we have:

M g sin \theta - T = Ma (1)

where

Mg sin \theta is the component of the weight of the block parallel to the incline, with

M = 8.0 kg (mass of the block)

g=9.8 m/s^2 (acceleration of gravity)

\theta=35^{\circ}

T = tension in the string

a = acceleration of the block

For the block on the left, we have similarly

T-mg sin \theta = ma (2)

where

m = 3.5 kg (mass of the block)

\theta=35^{\circ}

From (2) we get

T=mg sin \theta + ma

Substituting into (1),

M g sin \theta - mg sin \theta - ma = Ma

Solving for a,

a=\frac{M-m}{M+m}g sin \theta=\frac{8.0-3.5}{8.0+3.5}(9.8)(sin 35^{\circ})=2.2 m/s^2

2b)

The tension in the string can be calculated using the equation

T=mg sin \theta + ma

where

m = 3.5 kg (mass of lighter block)

g=9.8 m/s^2

\theta=35^{\circ}

a=2.2 m/s^2 (acceleration found in part 2)

Substituting,

T=(3.5)(9.8)(sin 35^{\circ}) +(3.5)(2.2)=27.4 N

3a)

The kinetic energy of an object is the energy due to its motion. It is calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

The potential energy is the energy possessed by an object due to its position in a gravitational field. For an object near the Earth's surface, it is given by

U=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the heigth of the object relative to the ground

3b)

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

For the object in this problem,

m = 500 g = 0.5 kg

v = 3 m/s

Substituting, we find its kinetic energy:

K=\frac{1}{2}(0.5)(3)^2=2.25 J

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

And about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • un jugador de beisbol batea un foul recto en el aire.la pelota deja el bate con una rapidez de 120 km/h. en ausencia de resisten
    15·1 answer
  • When calculating power what two pieces of information are needed?
    5·1 answer
  • The anther and filament are parts of a flower's:
    15·2 answers
  • 1. Point charges q 1 q 2 both of 22 nC are separated by a distance of 58 cm along a horizontal axis. Point a is located 40 cm fr
    7·1 answer
  • What symbol do we use for the resultant?
    12·1 answer
  • An AC voltage, whose peak value is 17.0 V, is across a 329.0 Ohm resistor. What is the value of the rms current in the resistor?
    10·1 answer
  • Which of the following is a unit of volume in the English system of measurement? (4 points)
    8·2 answers
  • A covalent bond in which electrons are shared equally is called a
    14·1 answer
  • The total length of the wire of potentiometer is 10m. A potential gradient of 0.0015 V/cm is obtained when a steady current is p
    14·1 answer
  • An electric motor uses 670 kJ of electrical energy to generate 595 kJ of mechanical kinetic energy. What is the efficiency of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!