1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
3 years ago
15

A load of 500 N is placed 8 N from the pivot what is the turning moment of the load

Physics
1 answer:
Nataliya [291]3 years ago
6 0
The answer is 4000N...
You might be interested in
A 2100 kg car starts from rest and accelerates at a rate of 2.6 m/s2 for 4.0 s. Assume that the force acting to accelerate the c
Reika [66]
When the system is experiencing a uniformly accelerated motion, there are a set of equations to work from. In this case, work is energy which consist solely of kinetic energy. That is, 1/2*m*v2. First, let's find the final velocity.

a = (vf - v0)/t
2.6 = (vf - 0)/4
vf = 10.4 m/s

Then W = 1/2*(2100 kg)*(10.4 m/s)2
W = 113568 J = 113.57 kJ
8 0
3 years ago
Which weather event is capable of destroying homes and uprooting trees due to a low pressure area at its center
Bond [772]

You're talking about a <em>tornado</em>.

It's not so much the low pressure that's so dangerous in the center of a tornado.  It's more a matter of the high winds that are <em>caused </em>by the low pressure.

7 0
4 years ago
Read 2 more answers
Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and ex
Ahat [919]

The question is incomplete. The complete question is :

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.

What is the frequency of the sound?

Solution :

Given :

The distance between the two loud speakers, d = 1.8 \ m

The speaker are in phase and so the path difference is zero constructive interference occurs.

At the point D, the speakers are out of phase and so the path difference is $=\frac{\lambda}{2}$

Therefore,

$AD-BD = \frac{\lambda}{2}

$\sqrt{(1.8)^2+(3)^2-3} =\frac{\lambda}{2}$

$\lambda = 2 \times 0.4985$

$\lambda = 0.99714 \ m$

Thus the frequency is :

$f=\frac{v}{\lambda}$

$f=\frac{340}{0.99714}$

f=340.9744 Hz

3 0
3 years ago
when an object is charged by contact, how does the kind of charge transferred compare to that on the object giving the charge?
11111nata11111 [884]

Lets say sphere 1 has a charge of 12 + and sphere 2 has a charge of 0 +. After they are touched Sphere 1 becomes 6 + and sphere 2 6 +. So 6 - 12 = a change of 6 -, while 6 - 0 = a change of 6 + Therfore,

Answer: The sign of the charge change / transfered are opposites.

8 0
3 years ago
Calculate the Schwarzschild radius (in kilometers) for each of the following.1.) A 1 ×108MSun black hole in the center of a quas
Westkost [7]

Answer:

(I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

Explanation:

Given that,

Mass of black hole m= 1\times10^{8} M_{sun}

(I). We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Where, G = gravitational constant

M = mass

c = speed of light

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times1\times10^{8}\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=2.94\times10^{8}\ km

(II). Mass of block hole m= 6 M_{sun}

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times6\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=17.7\ km

(III). Mass of block hole m= mass of moon

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times7.35\times10^{22}}{(3\times10^{8})^2}

R_{g}=1.1\times10^{-7}\ km

(IV). Mass = 50 kg

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times50}{(3\times10^{8})^2}

R_{g}=7.4\times10^{-29}\ km

Hence, (I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

8 0
3 years ago
Other questions:
  • A starlike object seen on deep sky photographs coincides with an intense radio source and has a spectrum in which the characteri
    6·1 answer
  • I need help with question 8 and 9
    8·1 answer
  • A gaseous decay product of uranium that is found in rocks is called
    6·1 answer
  • A step-up transformer is connected to a generator that is delivering 197 v and 113 A. The ratio of the turns on the secondary is
    13·1 answer
  • You and your dog are walking along a pond. Your dog looks into the still water and is startled to see its reflection. Which phen
    13·1 answer
  • Which would be a common-sense practice in a lab environment?
    7·1 answer
  • Does lightning come from the ground? I have heard that lightning comes from the ground up. But when it strikes something on land
    8·2 answers
  • Question 4 (point)
    5·1 answer
  • A raft has a mass of 152 kg. When a
    9·2 answers
  • Part C
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!