The molarity of a solution is the number of moles of a substance divided by the volume in liters prepared.
, where n is number of moles and V is the volume in liters.
In order to calculate the mass of solute we need to convert the volume and molarity to moles

Now that we have moles we use the relative formula mass of NaCO₃, We have 1 Na atom, 1 C atom and 3 O atoms, thus


The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
A solution is prepared by dissolving biphenyl into naphthalene. We can calculate the freezing point depression (ΔT) for naphthalene using the following expression.

where,
- i: van 't Hoff factor (1 for non-electrolytes)
- Kf: cryoscopic constant
- m: molality
The normal freezing point of naphthalene is 80.26 °C. The freezing point of the solution is:

The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
Learn more: brainly.com/question/2292439
Explanation:
I
have not yet learnt chemistry so sorry
explain the question your asking
When a substance is entering a phase change, the gain or loss of heat is a result of energy gained or lost in forming or breaking intermolecular interaction.
The constant temperatures occur when a substance is undergoing a phase transition. If heat is removed from a substance , such as in freezing and condensation , then the process is exothermic . In this instance , heat is decreasing the speed of the molecules causing then move slower.
Example : liquid to solid and gas to liquid .
These changes release heat to the surrounding.
To learn more about phase change,
brainly.com/question/12390797
#SPJ4