Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:

Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Answer:
21.02moles of KBr
Explanation:
Parameters given:
Number of moles BaBr₂ = 10.51moles
Complete reaction equation:
BaBr₂ + K₂SO₄ → KBr + BaSO₄
Upon inspecting the given equation, we find out that the atoms are not balanced on both sides of the equation:
The balanced equation is:
BaBr₂ + K₂SO₄ → 2KBr + BaSO₄
From the equation:
1 mole of BaBr₂ produces 2 moles of KBr
∴ 10.51 moles of BaBr₂ will yield (2 x 10.51) moles = 21.02moles of KBr
Answer:
2.86mol/L
Explanation:
Given parameters:
Number of moles of MgCl₂ = 7.15moles
Volume of solution = 2.50L
Unknown:
Molarity of the MgCl₂ solution = ?
Solution:
The molarity of a solution is the number of moles of solute found in a given volume.
Molarity =
Insert the parameters and solve;
Molarity =
= 2.86mol/L
Answer: option D. The attractive forces between the sodium and chloride ions are overcome by the attractive forces between the water and the sodium and chloride ions.
Explanation:
<em>Solid sodium chloride</em> (NaCl) is a ionic compound formed by ionic bonds between by the positive, metallic cations of sodium atom, Na⁺, and the negative, non-meatllic anions of chlorine atom, Cl⁻ (chloride).
Ionic bonds, then, are the electrostatic attracion between oppositely charged particles (cations and anions).
<em />
<em>When solid sodium chloride dissolves in water</em>, the ions (cations and anions) are separated in the solvent (water) due to the superior attracitve forces between such ions and the polar water molecules.
<em>Water</em> (H₂O) is a molecule, formed by polar covalent bonds between two hydrogen atoms and one oxygen atom.
The polarity of water molecule is due to the fact that oxygen atoms are more electronegative than hydrogen atoms, which cause that the electron density is closer to oxygen nuclei than to hydrogen nuclei. This asymmetry in the electron density conferes a partial positive charge over each hydrogen atom and a partial negative charge over the oxygen atoms.
Thus, the positively charged hydrogen atoms attract and surround the negative chloride (Cl⁻) anions, while the negatively charged oxygen atoms attract and surround the positive sodium (Na⁺) cations. It is only because the attractive forces between the water and the sodium and chloride ions are stronger than the attractive forces between the sodiium and chloride ions that such ions may be kept separated in the solution. This process is called solvation and the ions are said to be solvated by the water molecules.