Answer:
V = 44.85 L
Explanation:
Given data:
Volume of H₂ = ?
Number of moles of H₂ = 2.0 mol
Given temperature = 273.15 K
Given pressure = 1 atm
Solution:
Formula:
PV = nRT
P = Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × V = 2.0 mol × 0.0821 atm.L/ mol.K × 273.15 K
V = 44.85 atm.L / 1 atm
V = 44.85 L
Some of these are products most people wouldn't think originated from trees, which only further exemplifies the value of preserving our trees and forests!
Wine Corks. ...
Natural Aspirin and Acne Medication. ...
Sponges. ...
Chewing Gum. ...
Carnauba Wax. ...
Henna Dye. ...
Rubber.
Answer:
Soluble salts can be made by reacting acids with soluble or insoluble reactants. Titration must be used if the reactants are soluble. Insoluble salts are made by precipitation reactions.
Making insoluble salts
An insoluble salt can be prepared by reacting two suitable solutions together to form a precipitate.
Determining suitable solutions
All nitrates and all sodium salts are soluble. This means a given precipitate XY can be produced by mixing together solutions of:
X nitrate
sodium Y
For example, to prepare a precipitate of calcium carbonate:
X = calcium and Y = carbonate
mix calcium nitrate solution and sodium carbonate solution together
calcium nitrate + sodium carbonate → sodium nitrate + calcium carbonate
Ca(NO3)2(aq) + Na2CO3(aq) → 2NaNO3(aq) + CaCO3(s)
It also works if potassium carbonate solution or ammonium carbonate solution is used instead of sodium carbonate solution. Remember that all common potassium and ammonium salts are soluble.
please mark as brainliest
Explanation:
Answer:
25.7 kJ/mol
Explanation:
There are two heats involved.
heat of solution of NH₄NO₃ + heat from water = 0
q₁ + q₂ = 0
n = moles of NH₄NO₃ = 8.00 g NH₄NO₃ × 1 mol NH₄NO₃/80.0 g NH₄NO₃
∴ n = 0.100 mol NH₄NO₃
q₁ = n * ΔHsoln = 0.100 mol * ΔHsoln
m = mass of solution = 1000.0 g + 8.00 g = 1008.0 g
q₂ = mcΔT = 58.0 g × 4.184 J°C⁻¹ g⁻¹ × ((20.39-21)°C) = -2570.19 J
q₁ + q₂ = 0.100 mol ×ΔHsoln – 2570.19 J = 0
ΔHsoln = +2570.19 J /0.100 mol = +25702 J/mol = +25.7 kJ/mol
answer:
This allows us to tell alkenes apart from alkanes using a simple chemical test. Bromine water is an orange solution of bromine. It becomes colourless when it is shaken with an alkene. Alkenes can decolourise bromine water, but alkanes cannot.
explanation: