Answer:
v = 72.54 m/s
Explanation:
We have,
Length of a guitar string is 0.62 m
Frequency of a guitar string is 234 Hz
For guitar string,
The velocity of the wave in the string is given by :
So, the velocity of the waves in the string is 72.54 m/s.
B is the answer
16 x 6.0 = 96
Helping is my pleasure
Answer: Sound Energy
Sound Energy
Explanation:The vibrations produced by the ringing bell causes waves of pressure that travel or propagate through the medium that is air. Sound energy is a form of mechanical energy that is generally associated with the motion and position of the ringing bell.
The breaking distance consists of two parts. The first part is the first 0.5 seconds were no breaking occurs. Given values: t time, v₀ initial velocity:
x₁ = v₀*t
The second part occurs after t = 0,5s with the given acceleration: a = - 12 m/s²
were the final velocity is zero, v = 0 and the initial velocity v₀= 16m/s:
v = a*t + v₀ = 0 => v₀ = -a*t => t = v₀/-a
x₂ = 0.5*a*t² = 0.5*v°²/a
The total breaking distance is the sum of the two parts:
x = x₁ + x₂ = v₀* t + 0.5 * v₀² / a = 16 * 0.5 + 0.5 * 16² / 12 = 8 + 10,7 = 18,7
You can use this result to calculate the remaining distance. You can use the last equation to calculate the maximum speed you could have to avoid a collision.
Use x = 39m and solve for v₀.