The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Answer:
A=1
B=-2
Explanation:
Part A and B of the question wasn't given, however, I attached the relevant parts to solve this question as follows.
From part B as attached, it shows that the right option is C which is
2A+3B=-4
Substituting B with 3A-5 then we form the second equation as shown
2A+3(3A-5)=-4
By simplifying the above equation, we obtain
2A+9A-15=-4
Re-arranging, then
11A=-4+15
Finally
11A=11
A=1
To obtain B, we already know that 3A-5 so substituting the value of A into the above then we obtain
B=3(1)-5=-2
Therefore, required values are 1 and -2
Its the same thing. Is 250 grams more then 100 grams
Answer:
It includes earthwork, trenching, wall shafts, tunneling and underground
Explanation:
Magnetism is <span>a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects.</span>