Answer:
150.8 J
Explanation:
The heat released by the copper wire is given by:

where:
m = 10.0 g is the mass of the wire
Cs = 0.377 j/(g.C) is the specific heat capacity of copper
is the change in temperature of the wire
Substituting into the equation, we find

And the sign is negative because the heat is released by the wire.
Answer: condensation.
Vaporization is the pass from liquid state to gaseous state.
Then the reverse is the transformation from gaseous state to liquid state.
That is called condensation.
When the water vaporizes the liquid transforms into vapor which goes to the atmosphere. When the water vapor of the atmosphere condensates liquid water is formed. You can see condensation when you have a glass with cold water and drops of water form in the exterior of the glass: those drops are liquid water that formed when the vapor of the air that surrounds the glass cools due to the lower temperature of the surface of the glass.
Answer:
a = 2.72 [m/s2]
Explanation:
To solve this problem we must use the following kinematics equation:

where:
Vf = final velocity = 1200 [km/h]
Vo = initial velocity = 25 [km/h]
t = time = 2 [min] = 2/60 = 0.0333 [h]
1200 = 25 + (a*0.0333)
a = 35250.35 [km/h2]
if we convert these units to units of meters per second squared
![35250.35[\frac{km}{h^{2} }]*(\frac{1}{3600^{2} })*[\frac{h^{2} }{s^{2} } ]*(\frac{1000}{1} )*[\frac{m}{km} ] = 2.72 [\frac{m}{s^{2} } ]](https://tex.z-dn.net/?f=35250.35%5B%5Cfrac%7Bkm%7D%7Bh%5E%7B2%7D%20%7D%5D%2A%28%5Cfrac%7B1%7D%7B3600%5E%7B2%7D%20%7D%29%2A%5B%5Cfrac%7Bh%5E%7B2%7D%20%7D%7Bs%5E%7B2%7D%20%7D%20%5D%2A%28%5Cfrac%7B1000%7D%7B1%7D%20%29%2A%5B%5Cfrac%7Bm%7D%7Bkm%7D%20%5D%20%3D%202.72%20%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D)
Force required to accelerate 10 kg object to 5.9 m/s/s ?
Mass = 10 kg
Acceleration = 5.9 m/s^2
Force = Mass * Acceleration
Force = 10 kg * 5.9 m/s^2
Force = 59 kg m /s^2 = 59 N
That is very true, but what is the question asking you.