The answer is FM...That's why all the good stations that people listen to are on FM
Hello!
My best guess would be hydrogen and oxygen.
hopefully this helps!
Answer:
the correct answer is C, E’= 4E
Explanation:
In this exercise you are asked to calculate the electric field at a given point
E = 
indicates that the field is E for r = 2m
E =
(1)
the field is requested for a distance r = 1 m
E ’= k \frac{q}{r'^2}
E ’= k q / 1
from equation 1
4E = k q
we substitute
E’= 4E
so the correct answer is C
Answer:
<u><em></em></u>
- <u><em>1,500 kg.m/s</em></u>
Explanation:
First, arrange the information in a table:
Object Mass (kg) Velocity (m/s)
A 200 15
B 150 - 10
After the collision, the two objects are stick together, thus you talk aobut one object and one momentum.
According to the law of convervation of momentum, the momentum after the collision is equal to the momentum before the collision.
<u>Momentum before the collision, P₁</u>:


<u>Momentum after the collision</u>:
- As stated, it es equal to the momentum before the collision: 1,500 kg . m/s
Answer:
maximum speed 56 km/h
Explanation:
To apply Newton's second law to this system we create a reference system with the horizontal x-axis and the Vertical y-axis. In this system, normal is the only force that we must decompose
sin 10 = Nx / N
cos 10 = Ny / N
Ny = N cos 10
Nx = N sin 10
Let's develop Newton's equations on each axis
X axis
We include the force of friction towards the center of the curve because the high-speed car has to get out of the curve
Nx + fr = m a
a = v2 / r
fr = mu N
N sin10 + mu N = m v² / r
N (sin10 + mu) = m v² / r
Y Axis
Ny -W = 0
N cos 10 = mg
Let's solve these two equations,
(mg / cos 10) (sin 10 + mu) = m v² / r
g (tan 10 + μ / cos 10) = v² / r
v² = r g (tan 10 + μ / cos 10)
They ask us for the maximum speed
v² = 30.0 9.8 (tan 10+ 0.65 / cos 10)
v² = 294 (0.8364)
v = √(245.9)
v = 15.68 m / s
Let's reduce this to km / h
v = 15.68 m / s (1 km / 1000m) (3600s / 1h)
v = 56.45 km / h
This is the maximum speed so you don't skid