The new speed of car is 10.9 m/s
<h3 />
According to the principle of momentum conservation, momentum is only modified by the action of forces as they are outlined by Newton's equations of motion; momentum is never created nor destroyed inside a problem domain.
Mass of the railroad car, m₁ = 7950 kg
Mass of the load, m₂ = 2950 kg
It can be assumed as the speed of the car, u₁ = 15 m/s
Initially, it is at rest, u₂ = 0
Let v is the speed of the car. It can be calculated using the conservation of momentum as :




Therefore, the new speed of care is 10.9 m/s
Learn more about momentum here:
brainly.com/question/22257327
#SPJ1
Answer:
This is how I figured it out:
- 215.5 rounded to one significant figure is 200
- 101.02555 rounded to one significant figure is 100.
- 200 + 100 = 300.
Hope this helps!
Explanation:
Answer: Electromagnetic waves (Ultraviolet light, between 100 nm and 380 nm)
Explanation:
Solar cells work by the photoelectric effect, which consists of the emission of electrons (electric current) when light (electromagnetic waves) falls on a metal surface under certain conditions.
In this sense, the portion of the electromagnetic spectrum this cells use is Ultraviolet light (UV) from the Sun, whose wavelength is approximately between 100 nm and 380 nm.
It is important to note, this is a type of electromagnetic radiation that is not visible to the human eye.
Explanation:
Given that,
Potential = 75 kV
Exposure = 200 mR
Time = 0.2 sec
We need to calculate the x-ray fluence during this chest x-ray exam
Using formula of fluence

Put the value into the formula


We need to calculate the energy fluence
Using formula of energy fluence


We need to calculate dose -equivalent delivered to the bone, muscle, and fat
Using formula of dose

Where, D = dose
E = energy
t = time
Put the value into the formula


Hence, This is the required solution.
Answer:
Speed has no effect on voltage.
Explanation:
The voltage of the battery in your car is always 12 to 13.5 volts. It makes no difference whether the car is home in the garage or zooming down the interstate.