Answer:
The angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is <u>10°.</u>
Explanation:
Given:
Mass of the driver is, 
Radius of circular turn is, 
Linear speed of the car is, 
Since, the car makes a circular turn, the driver experiences a centripetal force radially inward towards the center of the circular turn. Also, the driver experiences a downward force due to her weight. Therefore, two forces act on the driver which are at right angles to each other.
The forces are:
1. Weight = 
2. Centripetal force, 'F', which is given as:

Now, the angle of the net force acting on the driver with respect to the vertical is given by the tan ratio of the centripetal force (Horizontal force) and the weight (Vertical force) and is shown in the triangle below. Thus,
°
Therefore, the angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is 10°.
Answer:
Distance between them increase
Explanation:
The position S of the water droplet can be determined using equation of motion

where
is the initial velocity which is zero here
is time taken,
is acceleration due to gravity
the position of first drop after time
is given by

the position of next drop at same time is

distance between them is
is 
from the above the difference will increase with the time
Answer:
The mass's acceleration is 5 m/s^2 in the minus X direction and 9,8 m/s^2 in the minus Y direction.
Explanation:
By applying the second Newton's law in the X and Y direction we found that in the minus X direction an external force of 10 N is exerted, while in the minus Y direction the gravity acceleration is acting:
X-direction balance force:
Y-direction balance force:
Where ax and ay are the components of the respective acceleration and m is the mass. By solving for each acceleration:
Note that for the second equation above the mass is cancelled and, the Y direction acceleration is minus the gravity acceleration:
For the x component aceleration we must replace the Newton unit:

Answer:
sun, earth, capitol building, human, atom
Explanation:
Gravity is directly proportional to the size of an object. Therefore, the object with the most mass will have the greatest force of gravity. We know this from the equation. 
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.