1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inessss [21]
3 years ago
14

(a) Write an equation describing a sinusoidal transverse wave traveling on a cord in the positive of a y axis with an angular wa

ve number of a period of 0.20 s, and an amplitude of 3.0 mm. Take the transverse direction to be the z direction.
(b) What is the maximum transverse speed of a point on the cord?
(c) What is the wave speed?
Physics
1 answer:
Vedmedyk [2.9K]3 years ago
7 0

Missing data: the wave number

k=60 cm^{-1}

(a)  z = 0.003 sin (6000y-31.4 t)

For a transverse wave travelling in the positive y-direction and with vibration along the z-direction, the equation of the wave is

z = A sin (ky-\omega t)

where

A is the amplitude of the wave

k is the wave number

\omega is the angular frequency

t is the time

In this situation:

A = 3.0 mm = 0.003 m is the amplitude

k = 60 cm^{-1} = 6000 m^{-1} is the wave number

T = 0.20 s is the period, so the angular frequency is

\omega=\frac{2\pi}{T}=\frac{2\pi}{0.20}=31.4 rad/s

So, the wave equation (in meters) is

z = 0.003 sin (6000y-31.4 t)

(b) 0.094 m/s

For a transverse wave, the transverse speed is equal to the derivative of the displacement of the wave, so in this case:

v_t = z' = -A \omega cos (ky-\omega t)

So the maximum transverse wave occurs when the cosine term is equal to 1, therefore the maximum transverse speed must be

v_{t}_{max} =\omega A

where

\omega = 31.4 rad/s\\A = 0.003 m

Substituting,

v_{t}_{max}=(31.4)(0.003)=0.094 m/s

(c) 5.24 mm/s

The wave speed is given by

v=f \lambda

where

f is the frequency of the wave

\lambda is the wavelength

The frequency can be found from the angular frequency:

f=\frac{\omega}{2\pi}=\frac{31.4}{2\pi}=5 Hz

While the wavelength can be found from the wave number:

\lambda = \frac{2\pi}{k}=\frac{2\pi}{6000}=1.05\cdot 10^{-3} m

Therefore, the wave speed is

v=(5)(1.05\cdot 10^{-3} )=5.24 \cdot 10^{-3} m/s = 5.24 mm/s

You might be interested in
What forces act to pull the poles of a magnet together, or to push them apart?​
masya89 [10]

Answer:

Gravity,

I hope this correct

4 0
3 years ago
According to Bernoulli's equation, the pressure in a fluid will tend to decrease if its velocity increases. Assuming that a wind
Pie

Answer:

The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s

= 16.125 Pa

Explanation:

The Bernoulli's equation is essentially a law of conservation of energy.

It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.

For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.

We also assume that the initial velocity of wind is 0 m/s.

This calculation is presented in the attached images to this solution.

Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.

The density is obtained to be 1.29 kg/m³.

Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.

We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.

Hope this Helps!!!

7 0
3 years ago
A uranium nucleus is traveling at 0.94 c in the positive direction relative to the laboratory when it suddenly splits into two p
Anettt [7]

Answer:

A   u = 0.36c      B u = 0.961c

Explanation:

In special relativity the transformation of velocities is carried out using the Lorentz equations, if the movement in the x direction remains

     u ’= (u-v) / (1- uv / c²)

Where u’ is the speed with respect to the mobile system, in this case the initial nucleus of uranium, u the speed with respect to the fixed system (the observer in the laboratory) and v the speed of the mobile system with respect to the laboratory

The data give is u ’= 0.43c and the initial core velocity v = 0.94c

Let's clear the speed with respect to the observer (u)

      u’ (1- u v / c²) = u -v

      u + u ’uv / c² = v - u’

      u (1 + u ’v / c²) = v - u’

      u = (v-u ’) / (1+ u’ v / c²)

Let's calculate

      u = (0.94 c - 0.43c) / (1+ 0.43c 0.94 c / c²)

      u = 0.51c / (1 + 0.4042)

      u = 0.36c

We repeat the calculation for the other piece

In this case u ’= - 0.35c

We calculate

       u = (0.94c + 0.35c) / (1 - 0.35c 0.94c / c²)

       u = 1.29c / (1- 0.329)

       u = 0.961c

6 0
3 years ago
What is the purpose of the wire coil in an electromagnet?
stealth61 [152]

Answer:

to create a magnetic field, which becomes stronger with an increase in the number of turns.

Explanation:

i jus read it

7 0
3 years ago
Read 2 more answers
Which of the following graph is used for determining the instantaneous velocity from the slope?
hoa [83]

Answer:

B. x - t graph

Explanation:

A position-time (x-t) graph is a graph of the position of an object against (versus) time.

Generally, the slope of the line of a position-time (x-t) graph is typically used to determine or calculate the velocity of an object.

An instantaneous velocity can be defined as the rate of change in position of an object in motion for a short-specified interval of time. Thus, an instantaneous velocity is a quantity that can be found by measuring the slope of a line that is tangent to a point on the graph.

Hence, the x - t graph also referred to as the position-time graph is used for determining the instantaneous velocity from the slope.

<u>For example;</u>

Given that the equation of motion is S(t) = 4t² + 2t + 10. Find the instantaneous velocity at t = 5 seconds.

Solution.

S(t) = 4t^{2} + 2t + 10

Differentiating the equation, we have;

S(t) = 8t + 2

Substituting the value of "t" into the equation, we have;

S(5) = 8(5) + 2

S(5) = 40 + 2

S(5) = 42 m/s.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A merry-go-round rotates at the rate of 0.14 rev/s with an 84 kg man standing at a point 2.4 m from the axis of rotation. What i
    9·1 answer
  • A coil of 1000 turns of wire has a radius of 12 cm and carries a counterclockwise current of 15A. If it is lying flat on the gro
    7·1 answer
  • WHICH OF THE FOLLOWING IS A HAZARD OF GLOBALIZATION???
    6·2 answers
  • If I travel 400 kilometers in 10 hours what is my speed
    15·2 answers
  • Gravity is a force between any two objects with mass wht doesn’t a person feel a gravitational force between them herself and an
    5·1 answer
  • Mass number of 43 and 21 electrons what is this atom
    13·1 answer
  • A 2 N and an 8 N force pull on an object to the right and a 4 N force pulls on the same object to the left. If the object has a
    13·1 answer
  • An object moves in a circle with a period of 0.025 hours. What is its frequency in Hz?
    15·1 answer
  • What is the process called when a solid changes to a<br> liquid?<br><br> ???20 points?ASAP please
    8·2 answers
  • Based on the diagram which of the following traits come before shearing teeth?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!