The proximate reason for the uptake by plants of nutrients like ammonium nitrate is homeostatis
<h3>
What is homeostasis?</h3>
Homeostasis refers to an organism's ability to regulate various physiological processes to keep internal states steady and balanced.
<h3>How does plant perform homeostatis?</h3>
As water leaves the plant tissues into the atmosphere, it takes energy with it in the form of heat.
Much like when we sweat, this allows the plant to cool and maintain homeostasis.
Similarly, the same process allows plants to absorb nutrient like ammonium nitrate.
Thus, the proximate reason for the uptake by plants of nutrients like ammonium nitrate is homeostatis.
Learn more about homeostatis here: brainly.com/question/1046675
#SPJ1
He set up his periodic table by the atomic mass
the mass of aluminum oxide (101.96 g/mol) produced from 1.74 g of manganese(iv) oxide (86.94 g/mol) is 1.36g
The reaction is 3 MnO2 + 4 Al ------ 2Al2o3+ Mn
3 mole of manganese oxide give 2 moles of aluminum oxide so by the reaction n( MnO2)/3 =n(al203)2
the formula is n= mass/M so, now substituting values
m (Al2O3)= m(MnO2) X 2 X M (Al2O3) / M(MnO2 X3
so, by substituting values, 2 X101.96 X1.74g / 3 X 86.94 =1.36g
so mass of aluminum oxide obtained = 1.36g
To learn more about Mass:
brainly.com/question/19694949
#SPJ4
<h3><u>Answer;</u></h3>
When hydrogen is covalently bonded to an electronegative atom
<h3><u>Explanation;</u></h3>
- Hydrogen bonding is a special type of dipole-dipole attraction between molecules. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom.
- Highly electronegative atoms attract shared electrons more strongly than hydrogen does, resulting in a slight positive charge on the hydrogen atom. The slightly positive hydrogen atom is then attracted to another electronegative atom, forming a hydrogen bond.