Answer:
the magnitude of acceleration will be 1.50m/s^2
Explanation:
To calculate your acceleration, you can use your formula that states that the net force on an object is equal to the mass of the object multiplied by the acceleration of the object. Fnet=ma
if you draw out this situation and label the forces you will have your vector towards the right with a magnitude of 20.0N and then your friction vector will be pointing to the left (in other words, in the negative direction) (opposing the direction of movement) with a magnitude of 5.00N, with the 10.0 kg box in the middle.
The net force will be calculated using F1+F2=Fnet where your F1=20.0N and F2= -5.00N (since it is towards the negative direction).
you will find that Fnet=15.0N
With that, plug in the values you know to calculate the acceleration of the block:
Fnet=ma
(15.0N)=(10.0kg)a from her you can divide both sides by 10 to isolate a:
1.50=a (and now make sure to label the units of your answer)
a=1.50m/s^2 (which is the typical unit for acceleration)
Answer:
Convection is heat transfer through the movement of liquids and gases.
When g=a, that means everything on earth fall at the same rate.
<h3>Why does everything fall to the earth at the same rate?</h3>
As such, all objects free fall at the same rate regardless of their mass. Because the 9.8 N/kg gravitational field at Earth's surface causes a 9.8 m/s/s acceleration of any object placed there, we often call this ratio the acceleration of gravity.
<h3>Why is gravity equal to acceleration?</h3>
When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.
Know more about gravity here
brainly.com/question/4014727
#SPJ2
Answer:

Explanation:
Given that
Radius of track = R
Radius of ball = r
The ball can be treated as solid sphere, so
The moment of inertia of ball

When the ball reach at the lowest position then it will have both angular and linear speed.
Condition for rolling without slipping v= ωr
Form energy conservation

v= ωr






<span>Using the kinematic equations below, we can calculate the initial velocity required.
Angle of projectile = 60 degrees
Acceleration due to gravity (Ay) = -10 m/s^2 (negative because downward)
Height of projectile (Dy) = 2m
Vfy^2=Voy^2 +2*Ay*Dy
Vfy = 0 m/s because the vertical velocity slows to zero at the height of its trajection.
So... 0 = Voy^2 + 2(-10)(2)
0 = Voy^2 - 40
40 = Voy^2
Sqrt40 = Voy
6.32 m/s = Voy
THIS IS NOT THE ANSWER. THIS IS JUST THE INITIAL VELOCITY IN THE Y DIRECTION.
Using trigonometry, Tan 60 = Voy/Vox. Tan 60 = 6.32/Vox. Vox*Tan 60 = Vox
Vox = 10.95 m/s. Now, using Vox = 10.95 and Voy = 6.32, we can use pythagorean theorem to find the total Vo. A^2 +B^2 = C^2
10.95^2 + 6.32^2 = C^2
Solving for C = 12.64 m/s
This is the velocity required to hit the surface. You can also calculate a bunch of other stuff now using the other kinematic equations.
V = 12.64 m/s</span>