Sequence: 5/2, 5/4, 5/8, 5/16
a8=?
a1=5/2
a2=5/4
a3=5/8
a4=5/16
a2/a1=(5/4)/(5/2)=(5/4)*(2/5)=(5*2)/(4*5)=2/4=1/2
a3/a2=(5/8)/(5/4)=(5/8)*(4/5)=(5*4)/(8*5)=4/8=1/2
a4/a3=(5/16)/(5/8)=(5/16)*(8/5)=(5*8)/(16*5)=8/16=1/2
Ratio: r=a2/a1=a3/a2=a4/a3→r=1/2
an=a1*r^(n-1)
a1=5/2, r=1/2
an=(5/2)*(1/2)^(n-1)
an=(5/2)*[1^(n-1)/2^(n-1)]
an=(5/2)*[1/2^(n-1)]
an=(5*1)/[2*2^(n-1)]
an=5/2^(1+n-1)
an=5/2^n
n=8→a8=5/2^8
a8=5/256
Answers:
The formula for the general term or nth term for the sequence is an=5/2^n
a8=5/256
Answer:
Solve for f.
f(−4)=−3x+6
Step 1: Divide both sides by -4.
−4f/-4 = −3x+6/−4
f=3/4x + −3/2
Answer:
f= 3/4x + −3/2
Answer:
65
Step-by-step explanation:
You find the one equally in the center of the numbers after they are in order.
= <span>(-8x - 9)(-9x2 + 7x - 9)
= 72x</span>³ - 56x² + 72x + 81x² - 63x + 81
= 72x³ + 25x² + 9x + 81
In short, Your Answer would be: Option D
Hope this helps!