8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka = ![\frac{[ClO-][H3O+]}{[HClO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BClO-%5D%5BH3O%2B%5D%7D%7B%5BHClO%5D%7D)
2.9 × 10^-8 = ![\frac{[x] [x]}{[0.265-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%20%5Bx%5D%7D%7B%5B0.265-x%5D%7D)
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
Answer:
wind
Explanation:
wind is a natural and renewable resource
Density = mass / volume
= 69g / 23 ml
= 3 g / ml.
Thus, the density of the sample is 3 grams per ml or 3g/ ml
<h3>
Answer:</h3>
28 mol CaF
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.7 × 10²⁵ molecules CaF
[Solve] moles CaF
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
28.2298 mol CaF ≈ 28 mol CaF
Answer:
likely be the same
Explanation:
this is because we have one color that both atoms share (green). both sample 1 and sample 2 have green and another color. yet, since they share one color, they are likely similar