1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina86 [1]
3 years ago
8

For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo

te a number.
Physics
1 answer:
pickupchik [31]3 years ago
4 0
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
You might be interested in
If launched at the right speed, what could eventually happen to objects launched from Newton's theoretical cannon on the top of
Nadusha1986 [10]
If the speed is higher than the orbital velocity, but not high enough to leave Earth altogether (lower than the escape velocity), it will continue revolving around Earth along an elliptical orbit. (D) for example horizontal speed of 7,300 to approximately 10,000 m/s for Earth.
4 0
3 years ago
A 750 g air-track glider attached to a spring with spring constant 14.0 N/m is sitting at rest on a frictionless air track. A 20
alexandr402 [8]

Answer:

the amplitude of  the subsequent oscillations is 0.11  m

the period of the subsequent oscillations is 1.94 s

Explanation:

given Information:

the mass of air-track glider, m_{1} = 750 g = 0.75 kg

spring constant, k = 13.0 N/m

the mass of glider, m_{2} = 200 g = 0.2 kg

the speed of glider,  v_{2} = 170 cm/s = 1.7 m/s

the amplitude of  the subsequent oscillations is A = 0.11  m

according to mechanical enery equation, we have

A = \sqrt{\frac{m_{1} +m_{2} }{k} }v_{f}

where

A is the amplitude and  v_{f} is the final speed.

to find v_{f}, we can use momentum conservation lwa, where the initial momentum is equal to the final momentum.

P_{f} = P_{i}

(m_{1} +m_{2} )v_{f} = m_{1} v_{1} +m_{2}v_{2}

v_{1} = 0, thus

(0.75+0.2)v_{f} = (0.75)(0)+(0.2)(1.7)

0.95 v_{f} = 0.34

v_{f} = 0.36 m/s

Now we can calculate the amplitude

A = \sqrt{\frac{0.75 +0.2 }{10} }0.36

A = 0.11  m

the period of the subsequent oscillations is T = 1.94 s

the equation for period is

T = 2π\sqrt{\frac{m_{1}+m_{2}  }{k} }

T = 2π\sqrt{\frac{0.75+0.2  }{10} }

T = 1.94 s

7 0
3 years ago
A spring scale hung from the ceiling stretches by 6.1 cm when a 2.0 kg mass is hung from it. The 2.0 kg mass is removed and repl
Hunter-Best [27]

The ideal spring equation is

                               Stretch  =  K  times  Force  .

This says that the stretch is directly proportional to the force.
In simple English, that means that if you double the force, then
you double the stretch, and if you multiply the force by  π  or
any other number, you multiply the stretch by the same number.

So you can always write a proportion for a spring:

                 Stretch₁ / Force₁  =  Stretch₂ / Force₂ .

Part A:

In Part-A of this question, the force is increased to  (2.5 / 2.0) =  1.25 times .

So the stretch is also increased to  1.25 times .

                 (1.25) x (6.1 cm)  =  7.625 cm  .
6 0
4 years ago
Mechanical advantage of a machine can be increased by designing it for:
Tems11 [23]

Answer:(4).

Explanation:

8 0
3 years ago
Definitions
Goryan [66]

Jxhdiebdnsskoshdhrjrbdksusvsjsowiw

4 0
3 years ago
Other questions:
  • GUYS I NEEEED THIS SOON. HELLLPPPP!!!
    13·1 answer
  • A car accelerates at a constant rate from 12 m/s to 27 m/s while it travels 125 m. How long does it take to achieve this speed?
    8·1 answer
  • Select the situation for which the torque is the smallest.
    14·1 answer
  • You work in a materials testing lab and your boss tells you to increase the temperature of a sample by 37.1 ∘c . the only thermo
    14·1 answer
  • Name and Describe the three main climate zones.<br><br><br> PLEASE HELP WILL GET BRAINLIEST
    13·1 answer
  • 6. A 73-kg woman stands on a scale in an elevator. The
    13·1 answer
  • Make predictions for the following five situations based on what you observed in part A. Check your answers only after you have
    6·1 answer
  • What is a key difference between chemical and nuclear reactions? In chemical reactions, new compounds are formed. In nuclear rea
    6·2 answers
  • a car is moving at a constant velocity of 20 m/s. A) plot a velocity vs time graph for a 10s interval. B) make a table of the di
    8·1 answer
  • A student wants to design an investigation to determine if an object has potential energy. What are some questions the student c
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!