Answer:
<em><u>True:</u></em> because when u look thru a telescope you are making an observation
Explanation:
Answer:


Explanation:
Specific Volume 
Absolute Pressure (a) 
Giving



(b) 
Giving



(a)
Generally the equation for quality of Steam X is mathematically given by



(b)
Generally the equation for quality of Steam X is mathematically given by



Answer:
a. cosθ b. E.A
Explanation:
a.The electric flux, Φ passing through a given area is directly proportional to the number of electric field , E, the area it passes through A and the cosine of the angle between E and A. So, if we have a surface, S of surface area A and an area vector dA normal to the surface S and electric field lines of field strength E passing through it, the component of the electric field in the direction of the area vector produces the electric flux through the area. If θ the angle between the electric field E and the area vector dA is zero ,that is θ = 0, the flux through the area is maximum. If θ = 90 (perpendicular) the flux is zero. If θ = 180 the flux is negative. Also, as A or E increase or decrease, the electric flux increases or decreases respectively. From our trigonometric functions, we know that 0 ≤ cos θ ≤ 1 for 90 ≤ θ ≤ 0 and -1 ≤ cos θ ≤ 0 for 180 ≤ θ ≤ 90. Since these satisfy the limiting conditions for the values of our electric flux, then cos θ is the required trigonometric function. In the attachment, there is a graph which shows the relationship between electric flux and the angle between the electric field lines and the area. It is a cosine function
b. From above, we have established that our electric flux, Ф = EAcosθ. Since this is the expression for the dot product of two vectors E and A where E is the number of electric field lines passing through the surface and A is the area of the surface and θ the angle between them, we write the electric flux as Ф = E.A
Traveling against currents usually takes longer. Kinda like walking against the wind, you feel the heaviness against your jacket as you push through it. Where when you walking with the wind, it kind of gives your a push. Same for with currents.
Answer:
The Peltier coefficient is a measure of the amount of heat carried by electrons or holes
Explanation: