The answer is 60.3% magnesium, 39.7% oxygen.
Solution:
The chemical equation for the reaction is 2 Mg + O2 → 2 MgO.
Since magnesium reacts completely with oxygen, it is the limiting reactant in the reaction. Hence, we can use the number of moles of magnesium to get the mass of MgO produced:
moles of magnesium = 14.7g / 24.305g mol-1
= 0.6048 mol
mass of MgO = 0.6048mol Mg(2 mol MgO/2mol Mg)(40.3044g MgO/1 mol MgO)
= 24.376g MgO
We can now solve for the percentage of magnesium:
% Mg = (14.7g Mg / 24.376g MgO)*100% = 60.3%
We also use the number of moles of magnesium to get the mass of oxygen consumed in the reaction:
mass of O2 = 0.6048 mol Mg (1mol O2 / 2mol Mg) (31.998g / 1mol O2)
= 9.676g
The percentage of oxygen is therefore
% O2 = (9.676g O2 / 24.376g MgO)*100%
= 39.7%
Notice that we can just subtract the magnesium's percentage from 100% to get
% O2 = 100% - 60.3% = 39.7%
A chemical bond is <span> lasting attraction between atoms that enables the formation of </span>chemical <span>compounds. </span>
A mirror is opaque, meaning that it reflects the light and images that shine on it's reflective surface.
"CH4" is the one gas among the choices given in the question that <span>would have the fastest rate of effusion. The correct option among all the options that are given in the question is the second option or option "B". I hope that this is the answer that has actually come to your great help.</span>
No
Magnesium Chloride is MgCl2
The method I use to name ionic compounds is 'swap and drop'
Mg oxidation number is +2 and Cl oxidation number is -1
Mg^2+ Cl^-1
'swap'
Mg^1 Cl^2
'drop'
MgCl2