When measuring copper that is collected on a filter paper, the mass measurement obtained will include both the mass of the filter paper and copper.
therefore we have to find the mass of the empty filter paper before copper is on the paper.
the mass of the filter paper alone is 0.27 g
then the mass of copper and filter paper is 0.98 g
therefore to find the mass of copper alone we have to take the difference between the 2 masses
mass of copper = (mass of copper + filter paper ) - mass of filter paper
= 0.98 g - 0.27 g
mass of copper = 0.71 g
<span>Answer:
Molecular:
HC2H3O2(aq) + KOH(aq) --> KC2H3O2(aq) + H2O(l)
Complete ionic:
HC2H3O2(aq) + K+(aq) + OH-(aq) --> K+(aq) + C2H3O2-(aq) + H2O(l)
Net Ionic:
HC2H3O2(aq) + OH-(aq) --> C2H3O2-(aq) + H2O(l)</span>
It will help burn more calories and build muscle in your legs because of the extra weight you are carrying when walking or running
Answer:
H₂SO₄
Explanation:
We have a compound formed by 0.475 g H, 7.557 g S, 15.107 g O. In order to determine the empirical formula, we have to follow a series of steps.
Step 1: Calculate the total mass of the compound
Total mass = mass H + mass S + mass O = 0.475 g + 7.557 g + 15.107 g
Total mass = 23.139 g
Step 2: Determine the percent composition.
H: (0.475g/23.139g) × 100% = 2.05%
S: (7.557g/23.139g) × 100% = 32.66%
O: (15.107g/23.139g) × 100% = 65.29%
Step 3: Divide each percentage by the atomic mass of the element
H: 2.05/1.01 = 2.03
S: 32.66/32.07 = 1.018
O: 65.29/16.00 = 4.081
Step 4: Divide all the numbers by the smallest one
H: 2.03/1.018 ≈ 2
S: 1.018/1.018 = 1
O: 4.081/1.018 ≈ 4
The empirical formula of the compound is H₂SO₄.
Answer:
It's coefficient to the front of each element that requires it.
Explanation:
It is coefficient to the front of each element or compound that requires it. Essentially you are multiplying the amount of atoms or compounds on one side to match the amount on the other side.