Answer:
1:16
Explanation:
The ground state of an electron on the planet is n = 4 compared the ground state of an electron at n =1. For a hydrogen atom, the electron energy level is given as:


Hence the ratio of their ionization energies is 1:16
One experimental property directly related to the strength of intermolecular forces is the boiling point of a substance.
In the liquid state, the intermolecular forces play a large role in the behavior of the substance. If the boiling point is low, this indicates weak forces such as Van der Waal's forces. On the other hand, a high boiling point indicates strong intermolecular forces such as hydrogen bonds.
Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
Since the barium ion will be isoelectronic to the nearest noble gas, which is xenon, the electronic configuration for Ba2+ is: [Xe]