Answer:
y = 0.5x - 5.5
Step-by-step explanation:
slope = 0.5, so this is the x coefficient.
y intercept = -2 - (7 x 0.5) = -5.5
Answer:
D = 45 and C = 26
Step-by-step explanation:
The bigger triangle has a 90 degree corner add that to 64 and you will get 164 (all of the triangles angles have to add to 180) from 180 subtract 164 and you get 26 which is C's answer
For D just divide 90 by 2 (90/2)=45
Let
x ----------> the height of the whole poster
<span>y ----------> the </span>width<span> of the whole poster
</span>
We need
to minimize the area A=x*y
we know that
(x-4)*(y-2)=722
(y-2)=722/(x-4)
(y)=[722/(x-4)]+2
so
A(x)=x*y--------->A(x)=x*{[722/(x-4)]+2}
Need to minimize this function over x > 4
find the derivative------> A1 (x)
A1(x)=2*[8x²-8x-1428]/[(x-4)²]
for A1(x)=0
8x²-8x-1428=0
using a graph tool
gives x=13.87 in
(y)=[722/(x-4)]+2
y=[2x+714]/[x-4]-----> y=[2*13.87+714]/[13.87-4]-----> y=75.15 in
the answer is
<span>the dimensions of the poster will be
</span>the height of the whole poster is 13.87 in
the width of the whole poster is 75.15 in
The external angle is suplementary to the internal angle close to it. We also know that the sum of all the internal angles of the triangle are equal to 180 degrees, this means that the angle "a" is suplementary to the sum of the angles "b" and "c". Through this logic, we can conclude that since:

Then we can conclude that:

Therefore the statement is true, the exterior angle is equal to the sum of its remote interior angles.
Let's use an example:
On this example, the external angle is 120 degrees, therefore the sum of the remote interior angles must also be equal to that. Let's try:

The sum of the remote interior angles is equal to the external angle.
7,215: 34 = 0,212205882352941