1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
3 years ago
9

An iron bar is placed in a flame, as shown below, and is heated until the end glows. The other end of the iron bar

Physics
1 answer:
san4es73 [151]3 years ago
5 0

Answer:

Energy is conducted from atom to atom along the length of the iron bar.

Explanation:

You might be interested in
Write the minkowski version of newtons seconds law in terms of proper acceleration
Sindrei [870]
F=ma where f=force,m=mass,acceleration =a
4 0
3 years ago
A 20.0 μf capacitor is charged to a potential difference of 850 v. the terminals of the charged capacitor are then connected to
liberstina [14]
  • (a) Q = 1.70\times 10^{-2}\;\text{C};
  • (b) V_\text{final} = 5.31\times 10^{2}\;\text{V};
  • (c) E_\text{final} = 4.52\;\text{J};
  • (d) \Delta E = 2.82\;\text{J}.

All four values are in 3 sig. fig.

<h3>Explanation</h3>

(a)

Q = C\cdot V = 20.0\times 10^{-6} \times 850\;\text{V} = 1.70\times 10^{-2}\;\text{J}.

(b)

Sum of the final charge on the two capacitors should be the same as the sum of the initial charge. Voltage of the two capacitors should be the same. That is:

C_1\cdot V_\text{final} +C_2 \cdot V_\text{final} = C_1\cdot V_\text{initial};

(C_1+C_2)\cdot V_\text{final} = C_1\cdot V_\text{initial};

\displaystyle V_\text{final} = \frac{C_1}{C_1+C_2}\cdot V_\text{initial}\\\phantom{V_\text{final}} = \frac{20.0\;\mu\text{F}}{20.0\;\mu\text{F} + 12.0\;\mu\text{F}} \times 850\;\text{V}\\\phantom{V_\text{final}} =531\;\text{V}.

(c)

\displaystyle E = \frac{1}{2}\cdot C\cdot V^{2}.

\displaystyle E_\text{final} = \frac{1}{2} (C_1 + C_2) \cdot {V_\text{final}}^{2} \\\phantom{E_\text{final}} = \frac{1}{2} \times (20.0\times 10^{-6} + 12.0\times 10^{-6}) \times 531.25\\\phantom{E_\text{final}} = 4.52\;\text{J}.

(d)

Initial energy of the system, which is the same as the initial energy in the 20.0\;\mu\text{F} capacitor:

\displaystyle E_\text{initial} = \frac{1}{2} \times 20.0\times 10^{-6} \times 850^{2} = 7.225\;\text{J}.

Change in energy:

\Delta E = 7.225\;\text{J} - 4.516\;\text{J} = 2.70\;\text{J}.

4 0
3 years ago
Find the first three harmonics of a string of linear mass density 2. 00 g/m and length 0. 600 m when the tension in it is 50. 0
gavmur [86]

The first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.

<h3>Velocity of the wave</h3>

The velocity of the wave is calculated as follows;

v = √T/μ

where;

  • T is tension
  • μ is mass per unit length = 2 g/m = 0.002 kg/m

v = √(50/0.002)

v = 158.1 m/s

<h3>First harmonic or fundamental frequency of the wave</h3>

f₀ = v/λ

where;

  • λ is the wavelength = 2L

f₀ = v/2L

f₀ = 158.1/(2 x 0.6)

f₀ = 131.8 Hz

<h3>Second harmonic of the wave</h3>

f₁ = 2f₀

f₁ = 2(131.8 Hz)

f₁ = 263.6 Hz

<h3>Third harmonic of the wave</h3>

f₂ = 3f₀

f₂ = 3(131.8 Hz)

f₂ = 395.4 Hz

Thus, the first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.

Learn more about harmonics here: brainly.com/question/4290297

#SPJ1

6 0
1 year ago
How has two dogs go awnser my other qestion first one will get brainly anser
aksik [14]
Yes, yea, yep, you don't make much sense.

7 0
3 years ago
How tall in cm is 5.4 feet
Digiron [165]
That is 164.592cm = 5.4 feet
3 0
3 years ago
Other questions:
  • you read about a rope and pulley machine that was able to produce equal amounts of output work and input work.was this a realist
    15·2 answers
  • A Jaguar XK8 convertible has an eight-cylinder engine. At the beginning of its compression stroke, one of the cylinders contains
    9·1 answer
  • Whats the standard unit for measuring mass
    8·2 answers
  • 9. What is the uncertainty of the measurement of a voltage measurement on the oscilloscope when the vertical scale is set to 2V
    5·1 answer
  • An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.00 T field with his f
    15·1 answer
  • Reason behind the study of refraction of light
    7·1 answer
  • What is uniform motion?
    9·1 answer
  • Explain approach in volleyball​
    9·1 answer
  • Please answer all three answers
    11·1 answer
  • Formulate your hypothesis​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!