Answer:
1.8x10⁻³m
Explanation:
From the question above, the following information was used to solve the problem.
wavelength λ = 4.5x10⁻⁷m
Length L = 2.0 meters
distance d = 5 x 10₋⁴m
ΔY = λL/d
= 4.5x10⁻⁷m (2) / 5 x 10₋⁴m
= 0.00000045 / 0.0005
= 0.0000009/0.0005
= 0.0018
= 1.8x10⁻³m
from the solution above The separation between two adjacent bright fringes is most nearly 1.8x10⁻³m
thank you!
The correct answer is the Sun.i hope that helped! if you have any questions or concerns about the answer i gave you please let me know!!
Answer:
1.97 x 10^8 m/s
Explanation:
refractive index of crown glass with respect to air, n = 1.52
speed of light in air, c = 3 x 10^8 m/s
Let v be the speed of light in crown glass.
By use of the definition of refractive index

where, n be the refractive index of crown glass, c be the speed of light in vacuum and v be the speed of light in crown glass


v = 1.97 x 10^8 m/s
Thus, the speed of light in crown glass is 1.97 x 10^8 m/s.