Answer:0.1677M
Explanation:
Molarity=moles/volume
Number of moles =mass/molar mass
Once you get the number of moles, you apply it to the molarity formula.
Answer:
The three-step synthesis of trans-2-pentene from acetylene is as follows.
<u>Step -1:</u> Formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkanes.
<u>Step -2:</u> Formation terminal alkyne to nonterminal alkynes.
<u>Step -3:</u> Formation of trans-pent - 2-pent-ene by reduction.
Explanation:
Synthesis of trans-pent-2-yne from ethyne takes place is mainly a three step synthesis which involves formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkane. Second step involves the further alkylation of terminal alkynes to higher order nonterminal alkynes and the third step involves the formation of trans-2-ene by dissolving reduction method.
The chemical reaction of each step of chemical reactions is as follows.
Yes, an OH group from ethanol can form a hydrogen bond to the ether O atom in the same way as it can do so with the single-bonded O atom in the ester.
The O atom in the carbonyl group of the ester can also form H-bonds with ethanol.
2KClO₃ → 2KCl + 3O₂
mole ratio of KClO₃ to O₂ is 2 : 3
∴ if moles of O₂ = 5 mol
then moles of KClO₃ =

= 3.33 mol
Mass of KClO₃ needed = mol of KClO₃ × molar mass of KClO₃
= 3.33 mol × ((39 × 1) + (35.5 × 1) + (16 × 3) g/mol
= 407.93 g