<h3>The average atomic mass of Iodine : 126.86 amu</h3><h3>Further explanation</h3>
Given
80% 127I, 17% 126I, and 3% 128I.
Required
The average atomic mass
Solution
The elements in nature have several types of isotopes
Atomic mass is the average atomic mass of all its isotopes
Mass atom X = mass isotope 1 . % + mass isotope 2.% + ... mass isotope n.%
Atomic mass of Iodine = 0.8 x 127 + 0.17 x 126 + 0.03 x 128
Atomic mass of Iodine = 101.6 + 21.42 + 3.84
Atomic mass of Iodine = 126.86 amu
Answer:
6KCl(aq) + Mg3(PO4)2(s) ... balanced equation
Explanation:
Answer:
88%.
Explanation:
The percentage yield of lead sulfate in this experiment is 88% if 2.53 is divided by 2.85 and multiply by 100. The percentage yield can be calculated when the experimental yield is divided by theoretical yield and then multiply by 100. The percentage yield tells us about the actual yield that is gained in the end of experiment which is lower than theoretical yield.
Osmosis is about the movement of water molecules and diffusion is about the movement of substances
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M