Simply be used as a reference point <span>to describe its position. a fact forming the basis of an evaluation or assessment; criterion. They had few cultural </span>reference points<span> in common.</span>
<u>Answer:</u>
According to newton's first law of motion, friction is required to make an object slow down.
<u>Explanation:</u>
According to the Newton's first law of motion, for an object to change its velocity (either a change in the magnitude or the direction), there must be a cause to it which is defined as a net external force.
For example, an object which is sliding across a table or floor slows down due to the net force of friction that is acting on that object.
Answer:
Liquid's index of refraction, n₁ = 1.27
Explanation:
It is given that,
The critical angle for a liquid in air is, 
We have to find the refractive index of the liquid. Critical angle of a liquid is defined as the angle of incidence in denser medium for which the angle of refraction is 90°.
Using Snell's law as :

Here, 

Where
n₂ = Refractive index of air = 1
n₁ = refractive index of liquid
So,


n₁ = 1.269
or n₁ = 1.27
Hence, the refractive index of liquid is 1.27
Answer:
19.21ms-¹
Explanation:
that is the solution above
Answer:
<em>C) It is either ferromagnetic or paramagnetic</em>
Explanation:
The complete question is given below
We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?
A) It must be ferromagnetic.
B) It must be paramagnetic.
C) It is either ferromagnetic or paramagnetic.
D) It must be diamagnetic.
A ferromagnetic material will respond towards a magnetic field. They are those materials that are attracted to a magnet. Ferromagnetism is associated with our everyday magnets and is the strongest form of magnetism in nature. Iron and its alloys is very good example of a material that readily demonstrate ferromagnetism.
Paramagnetic materials are weakly attracted to an externally applied magnetic field. They usually accelerate towards an electric field, and form internal induced magnetic field in the direction of the external magnetic field.
The difference is that ferromagnetic materials can retain their magnetization when the externally applied magnetic field is removed, unlike paramagnetic materials that do not retain their magnetization.
In contrast, a diamagnetic material is repelled away from an externally applied magnetic field.