Answer:
Answer:
a. 1.594 m/s = v
b. 1.274 m/s = v
Explanation:
A) First calculate the potential energy stored in the spring when it is compressed by 0.180 m...
U = 1/2 kx²
Where U is potential energy (in joules), k is the spring constant (in newtons per meter) and x is the compression (in meters)
U = 1/2(13.0 N/m)(0.180 m)² = 0.2106 J
So when the spring passes through the rest position, all of its potential energy will have been converted into kinetic energy. K = 1/2 mv².
0.2106 J = 1/2(0.170 kg kg)v²
0.2106 J = (0.0850 kg)v²
2.808m²/s² = v²
1.594 m/s = v
(B) When the spring is 0.250 m from its starting point, it is 0.250 m - 0.180 m = 0.070 m past the equilibrium point. The spring has begun to remove kinetic energy from the glider and convert it back into potential. The potential energy stored in the spring is:
U = 1/2 kx² = 1/2(13.0 N/m)(0.070 m)² = 0.031J
Which means the glider now has only 0.2106 J - 0.031J = 0.1796 J of kinetic energy remaining.
K = 1/2 mv²
0.1796 J = 1/2(0.170 kg)v²
0.138 J = (0.0850 kg)v²
1.623 m²/s² = v²
1.274 m/s = v
Distance D = 5 cm = 0.05m
Revolutions = 33.33 per min => t = 60 sec
Acceleration is v^2 / r, so first we need to find velocity
Velocity = (D x 3.14 x r) / t => (0.05 x 3.14 x 33.33) / 60
Velocity = 0.0872 m/s
Acceleration = v^2 / r = 0.0872^2 / 0.05 = 0.152.
Power (P)= Voltage (V)* Current (I)
P=50*10=500W
*This is a common answer of mine*
Hope this helps.
Answer:
10 N
Explanation:
Use the equation W=Fd, where W is the work (in joules), F is the force (in newtons), and d is the distance (in meters).'

Answer:
Half
Explanation:
Given that:
- radial distance of satellite from the earth,

Now, if the satellite is moved to a distance 
<u>We have the mathematical expression for the potential energy fue to gravitational field as:</u>
...................(1)
where:

M = mass of earth
m = mass of satellite
R = radial distance of satellite
<u>Now from eq. (1) initially we have:</u>

<u>after the satellite is moved, we have:</u>



which is half of the initial condition.