1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
____ [38]
3 years ago
10

If an eagle and a bumblebee are traveling at 8km/hr which has more momentum?

Physics
1 answer:
myrzilka [38]3 years ago
5 0
The eagle because it has more mass therefore more force and thenceforth more momentum
You might be interested in
What is the resistance of 1.0 m of a solid cylindrical metal cable having a diameter of 0.40 inches and a resistivity of 1.68 ×
Dahasolnce [82]

Given;

redistivity =1.68/100000000W.m

diameter =0.40in

=0.01016m

length =1m

resistance =?

redistivity =resistance×area/lenght

restance=resistivity × length /area

so, resistance =1.6535/1000000 ohmn

8 0
3 years ago
A major-league pitcher can throw a ball in excess of 40.1 m/s. If a ball is thrown horizontally at this speed, how much will it
mote1985 [20]

Answer:

The ball will drop 0.881 m by the time it reaches the catcher.

Explanation:

The position of the ball at time "t" is described by the position vector "r":

r = (x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

Where:

x0 = initial horizontal position.

v0x = initial horizontal velocity.

t = time.

y0 = initial vertical position.

v0y = initial vertical velocity.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

When the ball reaches the catcher, the position vector will be "r final" (see attached figure).

The x-component of the vector "r final", "rx final", will be 17.0 m. We have to find the y-component.

Using the equation of the x-component of the position vector, we can calculate the time it takes the ball to reach the catcher (notice that the frame of reference is located at the throwing point so that x0 and y0 = 0):

x = x0 + v0x · t

17.0 m = 0 m + 40.1 m/s · t

t = 17.0 m/ 40. 1 m/s = 0.424 s

With this time, we can calculate the y-component of the vector "r final", the drop of the ball:

y = y0 + v0y · t + 1/2 · g · t²

Initially, there is no vertical velocity, then, v0y = 0.

y = 1/2 · g · t²

y = -1/2 · 9.8 m/s² · (0.424 s)²

y = -0.881 m

The ball will drop 0.881 m by the time it reaches the catcher.

8 0
3 years ago
What is the half-life of a compound if 75 percent of a given sample of the compound decomposes in 60 min? assume first-order kin
LenKa [72]
The amount left of a given substance can be calculated through the equation,
                                              A = (A0) x 0.5^n/h
From the given scenario, 
                                           A/A0 = 0.75 = 0.5*(60/h)
The value of h from the equation is 144.565 minutes. 
6 0
4 years ago
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
rjkz [21]

Answer:

a) F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

b) \mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

Explanation:

In order to solve this problem we must first do a drawing of the situation and a free body diagram. (Check attached picture).

After a close look at the diagram and the problem we can see that the crate will have a constant velocity. This means there will be no acceleration to the crate so the sum of the forces must be equal to zero according to Newton's third law. So we can build a sum of forces in both x and y-direction. Let's start with the analysis of the forces in the y-direction:

\Sigma F_{y}=0

We can see there are three forces acting in the y-direction, the weight of the crate, the normal force and the force in the y-direction, so our sum of forces is:

-F_{y}-W+N=0

When solving for the normal force we get:

N=F_{y}+W

we know that

W=mg

and

F_{y}=Fsin \theta

so after substituting we get that

N=F sin θ +mg

We also know that the kinetic friction is defined to be:

f_{k}=\mu_{k}N

so we can find the kinetic friction by substituting for N, so we get:

f_{k}=\mu_{k}(F sin \theta +mg)

Now we can find the sum of forces in x:

\Sigma F_{x}=0

so after analyzing the diagram we can build our sum of forces to be:

-f+F_{x}=0

we know that:

F_{x}=Fcos \theta

so we can substitute the equations we already have in the sum of forces on x so we get:

-\mu_{k}(F sin \theta +mg)+Fcos \theta=0

so now we can solve for the force, we start by distributing \mu_{k} so we get:

-\mu_{k}F sin \theta -\mu_{k}mg)+Fcos \theta=0

we add \mu_{k}mg to both sides so we get:

-\mu_{k}F sin \theta +Fcos \theta=\mu_{k}mg

Nos we factor F so we get:

F(cos \theta-\mu_{k} sin \theta)=\mu_{k}mg

and now we divide both sides of the equation into (cos \theta-\mu_{k} sin \theta) so we get:

F=\frac{\mu_{k}mg}{cos \theta-\mu_{k}sin \theta}

which is our answer to part a.

Now, for part b, we will have the exact same free body diagram, with the difference that the friction coefficient we will use for this part will be the static friction coefficient, so by following the same procedure we followed on the previous problem we get the equations:

f_{s}=\mu_{s}(F sin \theta +mg)

and

F cos θ = f

when substituting one into the other we get:

F cos \theta=\mu_{s}(F sin \theta +mg)

which can be solved for the static friction coefficient so we get:

\mu_{s}=\frac{Fcos \theta}{Fsin \theta +mg}

which is the answer to part b.

3 0
3 years ago
Read 2 more answers
Each of 100 identical blocks siting on a frictionless surface is connected to the next bloc by a massless string. The first bloc
Anit [1.1K]

Answer:

A) 1 N

B) 50 N

Explanation:

Let us consider that the string does not deform.

To solve this problem lets consider the whole system as two parts. In the initial case, the first part will be de 100N being exterted to the whole system and in the second the 100 blocks system.

In this case we can imagine as the whole system being pulled by 100 N, and therefore its acceleration will be:

a = 100 N /(100 m)

where m stantds for the mass of one block

Now, the whole system and its individual parts must move with the same acceleration otherwise the string would stretch.

Now lets consider the first part of the system as the first block, and the second part as the other 99 blocks.

The Tension of the string pulling the 99 blocks must be so that it exterts the enough force to move that 99blocks-system at an acceleration a, since that sub-system has a mass of 99m

T1 = 99 m * a = (99 m) * (100 N/ 100 m) = 99 N

Now lets consider an intermidiate sub-system, where the first part is made of n blocks and the second susbsystem is made of (100 -n) blocks

Following the same logic, the tension of the corresponding string must be the acceleration of the whole systems times the mass of the second subsystem:

Tn = (100 -n)m * ( 100 N / 100 m ) = (100 -n) N

a)

Therefore the tension in the string connecting block 100 to block 99 must be

<u>T99 = 1 N</u>

<u />

b)

And

<u>T50 = 50 N</u>

6 0
3 years ago
Other questions:
  • Batteries have potential energy in their
    6·1 answer
  • You want to create an electric field vector E = &lt; 0, 5 104, 0&gt; N/C at location &lt; 0, 0, 0&gt;. Where would you place a p
    14·1 answer
  • 1. Explain what it means when we say a substance is magnetic. (HINT: Be sure to mention the role of the Electrons)
    10·1 answer
  • The diagram below shows a 1.0 x 105newton truck at rest on a hill that makes an angle of 8.0° with the
    8·1 answer
  • What force is required to accelerate to 10 kg object to 5.9 m/s/s?
    6·1 answer
  • How is the reflection of a light
    12·1 answer
  • What happens when you sit in a chair?
    14·1 answer
  • NEED HELP!!!! 15 POINTS!!!!
    12·1 answer
  • Static electricity is a ____ charge.<br> missing<br> temporary<br> flowing<br> permanent
    6·1 answer
  • 4. A ball is thrown with an initial speed vi at an angle θi with the horizontal. The
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!