Answer:
F=m x a
(F is force ,M is mass and A is acceleration)
in thisncase the Mass is given but we need to find ou the acceleration
Formula for acceleration-
a=(v - u)/t
(v is final velocity , u is initiatal velocity and t is time)
a = (0 - 80)/4
a= -80/4
a= -20
By substituting the values-
F= m x a
F= 1500 x -20
F=-30000N
Thus the force acted is -30000N
hope this helps
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
<span>The angle of refraction is not necessarily equal to the angle
of incidence, whereas the angle of reflection always is.</span>
Answer:
100 newtons
Explanation:
Given,
Jamal pushing a large box by a force, F = 100 N
Work done on the large box is, W = 0
It is because the applied force is less than the force of the friction between the two surfaces.
Yet, there will be a force that is exerted by the large box on Jamal.
According to newton's third law of motion, every action has an equal and opposite reaction. The reaction force is in the direction opposite to the force of action. But, their magnitude remains the same.

Hence, If the action force is 100 N, then the reaction force should be in 100 N
Answer:
Option C. Light waves can travel through space, sound waves cannot.
Explanation:
Light is an electromagnetic wave which requires no Meduim for propagation. However, sound wave requires a medium for propagation. Since space is empty, sound can not travel through it.