Answer:
C. Dissecting microscope
Explanation:
It is trying to see the surface
<u>Answer:</u> The equilibrium concentration of
is 0.332 M
<u>Explanation:</u>
We are given:
Initial concentration of
= 2.00 M
The given chemical equation follows:

<u>Initial:</u> 2.00
<u>At eqllm:</u> 2.00-2x x x
The expression of
for above equation follows:
![K_c=\frac{[CO_2][CF_4]}{[COF_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BCF_4%5D%7D%7B%5BCOF_2%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of ![COF_2=(2.00-2x)=[2.00-(2\times 0.834)]=0.332M](https://tex.z-dn.net/?f=COF_2%3D%282.00-2x%29%3D%5B2.00-%282%5Ctimes%200.834%29%5D%3D0.332M)
Hence, the equilibrium concentration of
is 0.332 M
I don’t think there is another way for you to get an extra switch from your Xbox sorry:((
Answer:
To have the electronic configuration equal to 1s²2s²2p⁶3s²3p⁶4s²3d⁷, the chemical element must have an electrical charge equal to 27, that is, it must have 27 electrons, such as Cobalt (Co), for example.
Explanation:
The electronic configuration shown in the question above is known as the Linus Pauling distribution and represents the energy sub-levels that an electrically charged atom can have in relation to the amount of electrons it has.
The layers sub-levels are presented in the following order 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹º 4p⁶ 5s² 4d¹º 5p⁶ 6s² 4f14 5d¹º 6p⁶ 7s² 5f14 6d¹º 7p⁶. Where the small numbers represent the number of electrons in each sub-level and the large numbers represent the layers of electronic distribution.
Accordingly, we can see that an atom that has the configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁷ has 27 electrons, like Cobalt.
To prevent the hydrolysis and to catalyse the reaction.
Explanation:
- Sulphuric acid is the catalyst and also a dehydrating agent in this reaction.
- Sulphuric acid is using in redox reaction because sulphuric acid is providing H+ ions which is necessary for this reaction to occur more quickly, but the sulphate ions from the sulphuric acid barely react during this process. So H2SO4 is adding in this reaction to make it more acidic.
- H2SO4 is preventing hydrolysis by providing excess H+ ions into the reaction. H2SO4 is stable towards the direction of oxidation.