Answer:
15.0 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
To calculate the volume, you need to (1) convert grams C₄H₁₀ to moles (via the molar mass), then (2) convert the temperature from Celsius to Kelvin, and then (3) calculate the volume (via the Ideal Gas Law).
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
32 grams C₄H₁₀ 1 moles
------------------------- x ----------------------- = 0.551 moles C₄H₁₀
58.124 grams
P = 728 mmHg R = 62.36 L*mmHg/mol*K
V = ? L T = 45.0 °C + 273.15 = 318.15 K
n = 0.551 moles
PV = nRT
(728 mmHg)V = (0.551 moles)(62.36 L*mmHg/mol*K)(318.15 K)
(728 mmHg)V = 10922.7632
V = 15.0 L
Answer:
Triglycerides are actually fats made from condensation of fatty acids and glycerol, and used in making soap because it readily reacts caustic alkali and precipitates soap molcules while glycerol is the produced alongside
Explanation:
Triglycerides are made when 3 molecules of fatty acids condenses with one molecule of glycerol having 3-sites of OH where the condensation takes place with the COOH functional group in the fatty acids and 3 molecules of water
M=43lb = 19,5kg
If 115mg --------- is for --------- 1kg
so
x ---------- is for --------- 19,5kg
x = 19,5kg * 115mg / 1kg
x = 2242,5 mg
Calcium carbonate has the formula: CaCO3
From the periodic table:
mass of calcium = 40 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Therefore,
molar mass of CaCO3 = 40 + 12 + 3(16) = 100 grams
molar mass of carbonate = 12 + 3(16) = 60 grams
One mole of calcium carbonate contains one mole of carbonate. Therefore, 100 grams of CaCO3 contains 60 grams of CO3.
If the 0.5376 grams of the unknown substance is CaCO3, then the amount of carbonate will be:
amount of carbonate = (0.5376*60) / 100 = 0.32256 grams
Based on the above calculations, the sample is not CaCO3