Explanation:
Just like an independent variable, a dependent variable is exactly what it sounds like. It is something that depends on other factors. For example, a test score could be a dependent variable because it could change depending on several factors such as how much you studied, how much sleep you got the night before you took the test, or even how hungry you were when you took it. Usually when you are looking for a relationship between two things you are trying to find out what makes the dependent variable change the way it does.
Answer:
4.993 ×10⁻¹¹ J
Explanation:
The <em>nuclear binding energy</em> is the energy equivalent to the mass defect.
The <em>mass defect</em> is the difference between the mass of a nucleus and the sum of the masses of its nucleons.
<em>Calculate the mass defect
</em>
16 p = 16 × 1.007 28 u = 16.116 48 u
16 n = 16 × 1.008 67 u = 16.138 72 u
Total mass of nucleons = 32.255 20 u
- Mass of S-32 = <u>31.972 070 u
</u>
Mass defect = 0.283 13 u
Convert the <em>unified atomic mass units to kilograms</em>.
Mass defect


Use Einstein’s equation to <em>convert the mass defect into energy</em>


Answer:
180 mg
Explanation:
For a first-order reaction, we can calculate the amount of aspirine (A) at a certain time (t) using the following expression.

where,
k: rate constant
A₀: initial amount
If we know the half-life (
) we can calculate the rate constant.

When t = 4 h and A₀ = 400 mg, A is:

Answer:
<em>Molecules of different gases with the same mass and temperature always have the same average kinetic energy - E.</em>
The answer is Velocity and potential energy. Kinetic energy is the total energy of a system or an object in motion and requires movement.