Answer:
I would say for #1 Fiona and for #2 sexual
Explanation:
Please give brailiest
<span>Answer
is: activation energy of this reaction is 212,01975 kJ/mol.
Arrhenius equation: ln(k</span>₁/k₂) = Ea/R (1/T₂ - 1/T₁<span>).
k</span>₁<span> = 0,000643
1/s.
k</span>₂ = 0,00828
1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
1/T₁<span> = 1/622 K = 0,0016 1/K.
1/T</span>₂<span> = 1/666 K =
0,0015 1/K.
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol · (-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol · (-0,0001 1/K).
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
The terms of a equation, the momentum of an object is equal to the mass of the object times the velocity of the object. where m is the mass and v is the velocity
Answer : The equilibrium concentration of
at
is,
.
Solution : Given,
Equilibrium constant, 
Initial concentration of
= 0.260 m
Let, the 'x' mol/L of
are formed and at same time 'x' mol/L of
are also formed.
The equilibrium reaction is,

Initially 0.260 m 0 0
At equilibrium (0.260 - x) x x
The expression for equilibrium constant for a given reaction is,
![K_c=\frac{[H_3O^+][C_2H_3O_2^-]}{[HC_2H_3O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_2H_3O_2%5E-%5D%7D%7B%5BHC_2H_3O_2%5D%7D)
Now put all the given values in this expression, we get

By rearranging the terms, we get the value of 'x'.

Therefore, the equilibrium concentration of
at
is,
.