Answer: D. Slow down the chain reaction by absorbing free neutrons
Explanation: just got it right on the quiz A P E X
135.1kPa
Explanation:
Given parameters:
T1 = 27°C
P1 = 101.325 kPa
T2 = 127°C
Unknown:
P2 = ?
Solution:
Using a derivative of the combined gas law where we assume that the gas has a constant volume, we can solve for the unknown.
At constant volume:

P1 is the initial pressure
T1 is the initial temperature
P2 is the final pressure
T2 is the final temperature
Take the given temperature to K
T1 = 27 + 273 = 300K
T2 = 127 + 273 = 400K
Input the variables:

P2 = 135.1kPa
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
Answer:
Increasing atomic number - True
Explanation:
The modern table is based on Mendeleev’s table, except the modern table arranges the elements by increasing atomic number instead of atomic mass.
The Atomic number is the number of protons in an atom, and this number is unique for each element. For example, Hydrogen has an atomic number of 1, Calcium has an atomic number of 20.
In the modern periodic table the elements are further arranged into:
- rows, called periods, in order of increasing atomic number. Elements in the same periods have the same number of shells.
- vertical columns, called groups, where the elements have similar properties. Elements in the same group has the same number of valency (outermost number of electrons)
The reaction between NaOH and H₂SO₄ is as follows;
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of base to acid is 2:1
NaOH is a strong acid and H₂SO₄ is a strong acid, therefore complete ionization into their respective ions takes place.
number of acid moles reacted - 0.112 M / 1000 mL/L x 39.1 mL = 0.0044 mol
the number of base moles required for neutralisation = 0.0044 x 2 = 0.0088 mol
Number of NaOH moles in 25.0 mL - 0.0088 mol
Therefore in 1000 mL - 0.0088 mol/ 25.0 mL x 1000 mL/L = 0.352 mol/L
Therefore molarity of NaOH - 0.352 M