Answer:
I=VRS=9V90Ω=0.1A
Explanation:
The equivalent resistance is the algebraic sum of the resistances (Equation 10.3. 2): RS=R1+R2+R3+R4+R5=20Ω+20Ω+20Ω+20Ω+10Ω=90Ω. The current through the circuit is the same for each resistor in a series circuit and is equal to the applied voltage divided by the equivalent resistance
Answer:
Option D: 21.8 degrees
Explanation:
In a parallel RL circuit, the current in the resistor R and that in the inductor L are separated among themselves 90 degrees as illustrated in the attached image. In the image the current in the resistor is represented in orange, that of the inductor in blue, and the total current (vector addition of the previous two) is represented in red, forming a certain angle (theta) with respect to the current in the resistor. The output voltage is the same as the input voltage as measured over the resistor R.
Therefore, the phase angle that separated output voltage and total current can be obtained using the fact that tan(phase angle) =
, therefore the angle is the arctangent of 4/10:
degrees.
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.