Answer:

Explanation:
Given:
- mass of water,

- initial temperature of water,

- final temperature of water,

- specific heat of water,

<u>Now the amount of heat energy required:</u>



Since all of the mechanical energy is being converted into heat, therefore the same amount of mechanical energy is required.
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:
d = vt = (22 m/s)(12 s) = 264 m
For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²
Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m
Thus,
Total Displacement = 264 m + 201.67 m = 465.67 or approximately 4.7×10² m.
The answer is position 3, because it is at its lowest point.
Potential Energy is “stored energy.” It is energy that is ready to be converted or released as another type of energy. We most often think of potential energy as gravitational potential energy. When objects are higher up, they are ready to fall back down. When you stretch an object and it has a tendency to return to its original shape, it is said to have elastic potential energy. Chemical potential energy is the stored energy in a substance’s chemical structure that can be released in a chemical reaction or as heat.
Answer:
No, you can't keep on dividing the charge forever.
Explanation:
No, you can't keep on dividing the charge in that manner forever because the total charge of the stick is an integer multiples of individual units known as an elementary charge, <em>which is the electron (e) charge (e = 1.602x10⁻¹⁹C)</em>.
Therefore the limit of the division of the original charge will be the electron charge since it is the smallest charge that can exist freely.
I hope it helps you!
<span>equal and acting on different objects</span>