Answer:
charge on each
Q1 = 2.06 ×
C
Q2 = 7.23 ×
C
when force were attractive
Q1 = 1.07 ×
C
Q2 = -1.39 ×
C
Explanation:
given data
total charge = 93.0 μC
apart distance r = 1.14 m
force exerted F = 10.3 N
to find out
What is the charge on each and What if the force were attractive
solution
we know that force is repulsive mean both sphere have same charge
so total charge on two non conducting sphere is
Q1 + Q2 = 93.0 μC = 93 ×
C
and
According to Coulomb's law force between two sphere is
Force F =
.........1
Q1Q2 = 
here F is force and r is apart distance and k is 9 ×
N-m²/C² put all value we get
Q1Q2 = 
Q1Q2 = 1.49 ×
C²
and
we have Q2 = 93 ×
C - Q1
put here value
Q1² - 93 ×
Q1 + 1.49 ×
= 0
solve we get
Q1 = 2.06 ×
C
and
Q1Q2 = 1.49 ×
2.06 ×
Q2 = 1.49 ×
Q2 = 7.23 ×
C
and
if force is attractive we get here
Q1Q2 = - 1.49 ×
C²
then
Q1² - 93 ×
Q1 - 1.49 ×
= 0
we get here
Q1 = 1.07 ×
C
and
Q1Q2 = - 1.49 ×
2.06 ×
Q2 = - 1.49 × 
Q2 = -1.39 ×
C
Answer:
well sound waves interact with our ears and light interacts with our vision
Explanation:
Answer:
a. 120 W
b. 28.8 N
Explanation:
To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
(a)
He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward
Power = efficiency X metabolic power
= 0.25 X 480
= 120 W
(b)
power if force times the velocity
P = Fv
convert 15 km/h to m/s
v = 15 kmph = 4.166 m/s
F = P/v
= 120/4.166
= 28.8 N
definition of terms
power is the rate at which work is done
force is that which changes a body's state of rest or uniform motion in a straight line
velocity is the change in displacement per unit time.
Answer:
a train
Explanation:
the train is longer the longer something is the more power it will have