Here's my best guess
the volume of the unit cell is (385*10^-12)^3=5.7066*10^-29 m^3
multiply by density to get mass
mass = (7 g/cm^3)*(100^3 cm^3 / 1^3 m^3) * 5.7066*10^-29 m^3= 3.99466*10^-22 g
covert to moles
3.99466*10^-22 g * 1 mol / 239.82 g = 1.6657 *10^-24 mol
convert to number of units
1.6657 *10^-24 mol * 6.23*10^23 units/mol = 1.04
385 pm = 3.85*10^(-8) cm
The volume of the unit cell is the cube of that, which is 5.71*10^(-23) cm^3. Since the ratio of mass to volume (i.e. the density) must be the same no matter what amount of TlCl you have, you can say:
7 = x/(5.71*10^(-23)), where x is the mass of the unit cell. Solving for x, you get 4*10^(-22) g.
The mass of a molecule of TlCl is 240 amu, which in grams is 4*10^(-22) g. The mass of the unit cell and the mass of a molecule of TlCl is the same. Therefore there is one formula unit of TlCl per unit cell.
The name for the compound Ag2S is Silver sulfide.
<u>Explanation</u>:
- The name for the compound Ag2S is Silver sulfide. It is the inorganic compound with the formula Ag
2S. A dense black solid, which is used as a photosensitizer in photography.
- Silver sulfide is insoluble in most solvents but is degraded using robust acids where the bonds have a low ionic of approximately 10%.
- It has a molar mass of 247.80 g / mol. The look is the grayish-black crystal, odorless, soluble in aqueous HCN, aqueous citric acid with KNO3 and insoluble in acids, alkalies.
While the other pairs, sodium and potassium are the metals, nitrogen and iodine, chlorine and bromine, helium and oxygen are the non-metals. They do not form ionic bond. Hence, the correct pairs of elements likely to form ionic compounds are, potassium and sulfur, magnesium and chlorine
Answer:
NaOH
Explanation:
HCl is a strong acid
Blood has a pH around 7.35, making it only slightly basic
Saliva has a pH around 6.7, making it slightly acidic
Answer:
V = 65.81 L
Explanation:
En este caso, debemos usar la expresión para los gases ideales, la cual es la siguiente:
PV = nRT (1)
Donde:
P: Presion (atm)
V: Volumen (L)
n: moles
R: constante de gases (0.082 L atm / mol K)
T: Temperatura (K)
De ahí, despejando el volumen tenemos:
V = nRT / P (2)
Sin embargo como estamos hablando de condiciones normales de temperatura y presión, significa que estamos trabajando a 0° C (o 273 K) y 1 atm de presión. Lo que debemos hacer primero, es calcular los moles que hay en 50 g de amoníaco, usando su masa molar de 17 g/mol:
n = 50 / 17 = 2.94 moles
Con estos moles, reemplazamos en la expresión (2) y calculamos el volumen:
V = 2.94 * 0.082 * 273 / 1
<h2>
V = 65.81 L</h2>