Answer:
1. CaO + H₂O ----> Ca(OH)₂
Compound ----- Compound
2. 2 Na + Cl₂ ----> 2 NaCl
Element ----- Element
3. 2 SO₂ + O₂ ----> 2 SO₃
Element ----- Compound
1:2:6? Ba(NO3)2 +Na2SO4 -----> BaSO4 + 2NaNO3
Ba(NO3)2
BaSO4
NaNO 3
Na2SO4
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).
Answer:
(a) Alkali metals: Francium (Fr)
(b) Chalcogens: Polonium (Po)
(c) Noble gases: Radon (Rn)
(d) Alkaline earth metals: Radium (Ra)
Explanation:
In the periodic table, the atomic mass increases down the group. Therefore, the last element of a group is the heaviest element of the group.
(a) alkali metals: The chemical elements that are present in group 1 of the periodic table, except hydrogen.
<u>The heaviest member of this group is francium (Fr)</u>
(b) chalcogens: The chemical elements that are present in group 16 of the periodic table
<u>The heaviest member of this group is polonium (Po)</u>
(c) noble gases: The chemical elements that are present in group 18 of the periodic table
<u>The heaviest member of this group is radon (Rn)</u>
(d) alkaline earth metals: The chemical elements that are present in group 2 of the periodic table.
<u>The heaviest member of this group is radium (Ra)</u>