I can’t use evidence from the picture but the green slime from the pond that they are talking about is called Algae, which is alive and can grow quickly with sunlight or any other source of energy such as water and carbon dioxide. Hope this helps!!
Answer: The given statement is TRUE.
Explanation:
An equilibrium reaction is one in which rate of forward reaction is equal to the rate of backward reaction.
Equilibrium constant is defined as the ratio of the product of the concentration of products to the product of the concentration of reactants each raised to their stochiometric coefficient.
For example for the given equilibrium reaction;

![K_{eq}=\frac{[H_2]^2[O_2]}{[H_2O]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BH_2O%5D%5E2%7D)
Thus the given statement that in calculating the equilibrium constant for a reaction, the coefficients of the chemical equation are used as exponents for the factors in the equilibrium expression is True.
This is not a question
what are you asking
Answer: Option (C) is the correct answer.
Explanation:
Chemical formula of a secondary amide is R'-CONH-R, where R and R' can be same of different alkyl or aryl groups. Here, the hydrogen atom of amide is attached to more electronegative oxygen atom of the C=O group.
Therefore, the hydrogen atom will be more strongly held by the electronegative oxygen atom. As a result, there will be strongly hydrogen bonded in the liquid phase of secondary amide.
Whereas chemical formula of nitriles is RCN, ester is RCOOR' and acid chlorides are RCOCl. As no hydrogen bonding occurs in any of these compounds because hydrogen atom is not being attached to an electronegative atom.
Thus, we can conclude that secondary amides are strongly hydrogen bonded in the liquid phase.