This may help you
First write and balance the equation, being:
CaCO3 - CaO + CO2
Then, using the periodic table, find the molecular masses of CaCO3 and of CaO, finding their ratio. That will be 100g:56g or 0.1kg:0.056kg. Since you have 4.7kg of CaCO3, it corresponds to Xkg of CaO. Making x the subject, it should be X= 4.7*0.056/100=0,002632
Answer:
V = 6.17 L
Explanation:
Given data:
Volume = ?
Number of moles = 0.382 mol
Pressure = 1.50 atm
Temperature = 295 k
R = 0.0821 L. atm. /mol. k
Solution:
According to ideal gas equation:
PV= nRT
V = nRT/P
V = 0.382 mol × 0.0821 L. atm. /mol. k ×295 k / 1.50 atm
V = 9.252 L. atm. / 1.50 atm
V = 6.17 L
☛ <u>299,792,458</u> meters per second.
In descending order from top:
E
F
D
A
C
B
All you really need to do is remember the symbols of each, and you’ve got it.
Answer:
m= 4,599.145 g
Explanation:
Let m = mass, d = density and V = volume of the osmium block.
m = d x V
m = 22.610 g/cm3 x (6.70 x 9.20 x 3.3) cm3
m = 4,599.145 g