A challenge they could face is that the plants are not used to the climate in the new area . (sorry if it’s wrong)
Answer:

Explanation:
We are asked to find how many moles of sodium carbonate are in 57.3 grams of the substance.
Carbonate is CO₃ and has an oxidation number of -2. Sodium is Na and has an oxidation number of +1. There must be 2 moles of sodium so the charge of the sodium balances the charge of the carbonate. The formula is Na₂CO₃.
We will convert grams to moles using the molar mass or the mass of 1 mole of a substance. They are found on the Periodic Table as the atomic masses, but the units are grams per mole instead of atomic mass units. Look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- C: 12.011 g/mol
- O: 15.999 g/mol
Remember the formula contains subscripts. There are multiple moles of some elements in 1 mole of the compound. We multiply the element's molar mass by the subscript after it, then add everything together.
- Na₂ = 22.9897693 * 2= 45.9795386 g/mol
- O₃ = 15.999 * 3= 47.997 g/mol
- Na₂CO₃= 45.9795386 + 12.011 + 47.997 =105.9875386 g/mol
We will convert using dimensional analysis. Set up a ratio using the molar mass.

We are converting 57.3 grams to moles, so we multiply by this value.

Flip the ratio so the units of grams of sodium carbonate cancel.




The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place to the right tells us to round the 0 up to a 1.

There are approximately <u>0.541 moles of sodium carbonate</u> in 57.3 grams.
Your answer is C. its level of dissolved minerals ~A
Answer:
an estimate of the strength of a bond.
Explanation:
The bond order is given as;
1/2(number of bonding electrons - number of anti bonding electrons)
The bond order tells us about the strength of bond. As the bond order increases, so does the strength of the bond because atoms involved in bonding come closer to each other as the bond length decreases.
Hence, bond order is an index of bond strength. Triple bonds are stronger than double bonds which are stronger than single bonds.
Answer:
1) 1.15 mol
2) M=0.45
3) 22.5 mL
4) 6.25 mL
Explanation:
1)
550 mL= 0.55 L
M= mol solute/ L solution
mol solute= M * L solution
mol solute= (2.1 M * 0.55 L ) M=1.15 mol solute
2)
155 mL = 0.155 L
80 g -> 1 mol NH4NO3
5.61 g -> x
x= (5.61 g * 1 mol NH4NO3)/80 g x= 0.07 mol NH4NO3
M=(0.07 mol NH4NO3)/0.155 L M=0.45
3) M1V1=M2V2
V1= M2V2/M1
V1= (0.500 M * 0.225 L)/5.00 M V1=0.0225 L =22.5 mL
4) M1V1=M2V2
V1= M2V2/M1
V1= (0.25 M * 0.45 L)/ 18.0 M
V1=6.25 x 10^-3 L = 6.25 mL