The equilibrium constant is 1.3 considering the reaction as written in the question.
<h3>Equilibrium in chemical reactions</h3>
In a chemical reaction, the equilibrium constant is calculated based on the equilibrium concentration of each specie. The equation of this reaction is;
A (g) + 2B (g) ⇌ 3C (g).
The initial concentration of each specie is;
- A - 9.22 M
- B - 10.11 M
- C - 27.83 M
The equilibrium concentration of B is 18.32 M
We now have to set up the ICE table as follows;
A (g) + 2B (g) ⇌ 3C (g)
I 9.22 10.11 27.83
C -x -x +x
E 9.22 - x 10.11 - x 27.83 + x
The equilibrium concentration of B is 18.32 M hence;
10.11 - x = 18.32
x = 10.11 - 18.32 = -8.21
Hence;
Equilibrium concentration of A = 9.22 - (-8.21) = 17.43
Equilibrium concentration of C = 27.83 + (-8.21) = 19.62
Equilibrium constant K = [19.62]^3/[17.43] [18.32]^2
K = 1.3
Learn more about equilibrium constant: brainly.com/question/17960050
Answer:
4.96 mol/dm³
Explanation:
From the question,
Mass of NaCl that dissolved in 0.5L of water = 500-346.8 = 153.2 g.
Therefore, 145.2(1/0.5)g of NaCl will dissolve in 1 L of water
mass of NaCl that will dissolve in 1 L of water = 290.4 g/dm³
Molar mass of NaCl = 58.5 g/mol.
Solubility is the amount of substance in mol that will dissolve in 1 L or 1 dm³ Solution.
solubility in (mol/dm³) = solubility in (g/dm³)/molar mass.
solubility in (mol/dm³) = 290.4/58.5
solubility in (mol/dm³) = 4.96 mol/dm³
Hello! Before I answer to your question, please be sure to include a picture or else a report will be filed for your question would be commenced. You are lucky I have this for my homework tonight and I figured it out. Thank you:
The answer to your question would be as followed:
The most precise measurement for the cylinder you are mentioning is <em><u>B. 43.0mL</u></em>